Skip to main content
Log in

The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alvey S, Yang CH, Buerkert A, Drowley DE (2003) Cereal/legume rotation effects on rhizosphere bacterial community structure in west African soils. Biol Fertil Soil 37:73–82

    Google Scholar 

  • Andreote FD, Araújo WL, Azevedo JL, Van Elsas JD, Van Overbeek L (2009) Endophytic colonization of potato (Solanum tuberosum L.) by a novel competent bacterial endophyte, Pseudomonas putida strain P9, and the effect on associated bacterial communities. Appl Environ Microbiol. doi:10.1128/AEM.00491-09

  • Appuhn A, Joergensen RG (2006) Microbial colonization of roots as a function of plant species. Soil Biol Biochem 38:1040–1051

    Article  CAS  Google Scholar 

  • Ashelford KE, Day MJ, Fry JC (2003) Elevated abundance of bacteriophage infecting bacteria in soil. Appl Environ Microbiol 69:285–289

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Baum C, Hrynkiewicz K (2006) Clonal and seasonal shifts in communities of saprotrophic microfungi and soil enzyme activities in the mycorrhizopshere of Salix spp. J Plant Nutr 169:481–487

    Article  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Zachow C, Lottmann J, Götz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    Article  PubMed  CAS  Google Scholar 

  • Bintrim SB, Donohue TJ, Handelsman J, Roberts GP, Goodman RM (1997) Molecular phylogeny of Archaea from soil. PNAS 94:277–282

    Article  PubMed  CAS  Google Scholar 

  • Bohannan BJM, Kerr B, Jessup CM, Hughes JB, Sandvik G (2002) Trade-offs and coexistence in microbial microcosms. Antonie van Leeuwenhoek 81:107–115

    Article  PubMed  CAS  Google Scholar 

  • Bomberg M, Jurgens G, Saan A, Sen R, Timonen S (2003) Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMS Microbiol Ecol 43:163–171

    Article  CAS  PubMed  Google Scholar 

  • Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from Eastern Amazonia: Evidence for unusual microorganism and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744

    Article  PubMed  CAS  Google Scholar 

  • Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765

    Article  PubMed  CAS  Google Scholar 

  • Bruns T, Arnold AE, Hughes K (2008) Fungal networks made of humans: UNITE, FESIN and frontiers in fungal ecology. New Phytol 177:586–588

    PubMed  Google Scholar 

  • Buée M, Vairelles D, Garbaye J (2005) Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech Fagus silvatica forest subjected to two thinning regimes. Mycorrhiza 15:235–245

    Article  PubMed  Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  CAS  Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    Article  PubMed  CAS  Google Scholar 

  • Cairney JWG, Meharg AA (2002) Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot 80:803–809

    Article  Google Scholar 

  • Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M-L, Brussow H (2003) Phage as agents of lateral gene transfer. Curr Opin Microbiol 6:417–424

    Article  PubMed  CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: A budgeting analysis. Appl Environ Microbiol 72:1258–1266

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  PubMed  CAS  Google Scholar 

  • Courty PE, Franc A, Pierrat J-C, Garbaye J (2008) Temporal changes in the ectomycorrhizal community on two soil horizons of a temperate oak forest. Appl Environ Microbiol 74:5792–5801

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea may.s L. Microb Ecol 41:252–163

    PubMed  CAS  Google Scholar 

  • Chen X, Zhu YG, Xia Y, Shen J-P, He J-Z (2008) Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? Environ Microbiol 10:1978–1987

    Article  PubMed  CAS  Google Scholar 

  • Chow M, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357

    Article  CAS  PubMed  Google Scholar 

  • Coenye T, Vandamme P, Govan JRW, LiPuma JJ (2001) Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39:3427–3436

    Article  PubMed  CAS  Google Scholar 

  • Cohan FM, Perry EB (2007) Systematics for discovering the fundamental units of bacterial diversity. Curr Biol 17:R373–R386

    Article  PubMed  CAS  Google Scholar 

  • Conrad R, Klose M, Noll M, Kemnitz D, Bodelier PLE (2008) Soil type links microbial colonization of rice roots to methane emission. Glob Chan Biol 14:657–669

    Article  Google Scholar 

  • Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236–249

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Van Aarle IM, Mendes R, Van Elsas JD (2009) Genomics of pyrrolnitrin biosynthetic loci: evidence for conservation and whole-operon mobility within Gram-negative bacteria. Environ Microbiol 11(1):159–175

    Article  PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The rhizosphere. Springer, New York

    Google Scholar 

  • Dalmastri C, Chiarini L, Cantale C, Bevivino A, Tabacchioni S (1999) Soil type and maize cultivar affect the genetic diversity of maize root-associated Burkholderia cepacia populations. Microb Ecol 38:273–284

    Article  PubMed  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Ecol 29:795–811

    Google Scholar 

  • De Boer W, Kowalchuk GA, van Veen JA (2006) ‘Root-food’ and the rhizosphere microbial community composition. New Phytol 170:3–6

    Article  PubMed  Google Scholar 

  • De Boer W, de Ridder-Duine AS, Klein Gunnewiek PJA, Smant W, van Veen JA (2008) Rhizosphere bacteria from sites with higher fungal densities exhibit greater levels of potential antifungal properties. Soil Biol Biochem 40:1542–1544

    Article  CAS  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, van Cleemput O, Boeckx P, Müller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    CAS  Google Scholar 

  • Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepecia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    Article  CAS  Google Scholar 

  • Duineveld MD, Rosado AS, Van Elsas JD, Van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957

    PubMed  CAS  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified Canola (Brassica napus). Appl Environ Microbiol 69:7310–7318

    Article  PubMed  CAS  Google Scholar 

  • Elsherif M, Grossmann F (1996) Role of biotic factors in the control of soil-borne fungi by fluorescent pseudomonads. Microbiol Res 151:351–357

    Google Scholar 

  • Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice Cluster I Archaea–the key methane producers in the rice rhizosphere. Science 313:370–372

    Article  PubMed  CAS  Google Scholar 

  • Filion M, Hamelin RC, Bernier L, St-Arnaud M (2004) Molecular profiling of rhizosphere microbial communities associated with healthy and diseased black spruce (Picea mariana) seedlings grown in a nursery. Appl Environ Microbiol 70:3541–3551

    Article  PubMed  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytol 157:493–502

    Article  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Friend T (2007) The Third Domain. Joseph Henry Press, Washington, DC

    Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399:541–548

    Article  PubMed  CAS  Google Scholar 

  • Fulthorpe RR, Roesch LFW, Riva A, Triplett EW (2008) Distantly sampled soils carry few species in common. ISME J 2:901–910

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformatins of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Gochnauer MB, McCully ME, Labbé H (1989) Different populations of bacteria associated with sheathed and bare regions of roots of field-grown maize. Plant Soil 114:107–120

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbeva P, Voesenek K, Van Elsas JD (2004) Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463

    Article  CAS  Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2005) Fine-scale distribution of pine extomycorrhizas and their extrametrical mycelium. New Phytol 170:381–390

    Article  Google Scholar 

  • Goodman RM, Bintrim SB, Handelsman J, Quirino BF, Rosas JC, Simon HM, Smith KP (1998) A dirty look: soil microflora and rhizosphere microbiology. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, pp 219–231

    Google Scholar 

  • Gramms G, Bergmann H (2008) Role of plants in the vegetative and reproductive growth of saprobic basidiomycetous ground fungi. Microbiol Ecol 56(4):660–670

    Article  Google Scholar 

  • Grandmougin-Ferjani A, Delpé Y, Hartmann M-A, Laruelle F, Sancholle M (1999) Strerol distribution in arbuscular mycorrhizal fungi. Phytochem 50:1027–1031

    Article  CAS  Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem. 30:369–378

    Article  CAS  Google Scholar 

  • Green SJ, Inbar E, Michel FC, Jr HY, Minz D (2006) Succession of bacterial communities during early plant development: Transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Gremion F, Chatzinotas A, Harms H (2003) Comparative 16 S rDNA and 16 S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol 5:896–907

    Article  PubMed  CAS  Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  CAS  Google Scholar 

  • Gu Y-H, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species–opportunistic, avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    Article  CAS  Google Scholar 

  • Henn MR, Chapela IH (2001) Ecophysiology of C-13 and N-15 isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128:480–487

    Article  Google Scholar 

  • Herrmann M, Saunders AM, Schramm A (2008) Archaea dominate the ammonia-oxidizing community in the rhizosphere of the freshwater macrophyte Littorella uniflora. Appl Environ Microbiol 74:3279–3283

    Article  PubMed  CAS  Google Scholar 

  • Herschkovitz Y, Lerner A, Davidov Y, Rothballer M, Hartmann A, Okon Y, Jurkevitch E (2005) Inoculation with the plant growth promoting rhizobacterium Azospirillum brasilense causes little disturbance in the rhizosphere and rhizoplane of maize (Zea mays). Microb Ecol 50:277–288

    Article  PubMed  CAS  Google Scholar 

  • Hobbie EA, Horton TR (2007) Evidence that saprotrophic fungi mobilise carbon and mycorrhizal fungi mobilise nitrogen during litter decomposition. New Phytol 173:447–449

    Article  PubMed  CAS  Google Scholar 

  • Houlden A, Timms-Wilson TM, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335

    Article  PubMed  CAS  Google Scholar 

  • Houweling S, Kaminski T, Dentener F, Lelieveld J, Heimann M (1999) Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J Geophys Res 104:26137–26160

    Article  CAS  Google Scholar 

  • Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of Streptomycetes. Microb Ecol 50:73–81

    Article  PubMed  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440

    Article  PubMed  CAS  Google Scholar 

  • Izzo A, Agbowo J, Bruns TD (2005) Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. New Phytol 166:619–630

    Article  PubMed  Google Scholar 

  • Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74:3121–3129

    Article  PubMed  CAS  Google Scholar 

  • Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396

    Article  PubMed  CAS  Google Scholar 

  • Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp in relation to soil water potential in five beech forests. Plant Soil 255:487–494

    Article  CAS  Google Scholar 

  • Jia Z, Ishihara R, Nakajima Y, Asakawa S, Kimura M (2007) Molecular characterization of T4-type bacteriophages in a rice field. Environ Microbiol 9:1091–1096

    Article  PubMed  CAS  Google Scholar 

  • Joergensen RG (2000) Ergosterol and microbial biomass in the rhizopshere of grassland soils. Soil Biol Biochem 32:647–652

    Article  CAS  Google Scholar 

  • Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L). Microb Ecol 43:298–306

    Article  PubMed  CAS  Google Scholar 

  • Julou T, Burhardt B, Gebauer G, Berviller D, Damesin C, Selosse M-A (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and non-photosynthetic mutants of Cephalanthera damasonium. New Phytol 166:639–653

    Article  PubMed  CAS  Google Scholar 

  • Jurgens GLK, Saano A (1997) Novel group within the kingdom Crenarcheota from boreal forest soil. Appl Environ Microbiol 63:803–805

    PubMed  CAS  Google Scholar 

  • Jurkevitch E (2007) A brief history of short bacteria: a chronicle of Bdellovibrio (and like organisms) research. In: Jurkevitch E (ed) Predatory Prokaryotes - Biology, ecology, and evolution. 2007. Springer-Verlag, Heidelberg

    Chapter  Google Scholar 

  • Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv Westar) employing cultivation-dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    PubMed  CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Jia Z-J, Nakaya N, Asakawa S (2008) Ecology of viruses in soils: Past, present and future perspectives. Soil Sci Plant Nut 54:1–32

    Google Scholar 

  • Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58:125–168

    Article  PubMed  CAS  Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, Van Pée K-H, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    PubMed  CAS  Google Scholar 

  • Ludwig W, Bauer SH, Bauer M, Held I, Kirchhoh G, Schulze R, Huber I, Spring S, Hartmann A, Schleifer KH (1997) Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol Lett 153:181–190

    Article  PubMed  CAS  Google Scholar 

  • Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2009) Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J 3:378–382

    Article  PubMed  CAS  Google Scholar 

  • Koide RT, Shumway DL, Xu B, Sharda JN (2007a) On temporal partinioning of a community of ectomycorrhizal fungi. New Phytol 74:420–429

    Article  Google Scholar 

  • Koide R, Courty P-E, Garbaye J (2007b) Research perspectives on functional diversity in ectomycorrhizal fungi. New Phytol 174:240–243

    Article  PubMed  Google Scholar 

  • Koljalg U, Larsson KH, Abarenkov K et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    Article  PubMed  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper T, van Breemen N (2001) Linking plants to rocks ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  PubMed  Google Scholar 

  • Landeweert R, Veeman C, Kuyper T, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283–292

    Article  CAS  PubMed  Google Scholar 

  • Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456

    PubMed  CAS  Google Scholar 

  • Lee MS, Do JO, Park MS, Jung S, Lee KH, Bae KS, Park SJ, Kim SB (2006) Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species. Calystegia soldanella and Elymus mollis Antonie van Leeuwenhoek 90:19–27

    Article  CAS  Google Scholar 

  • Lee S-H, Ka J-O, Cho J-E (2008) Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol Lett 285:263–269

    Article  PubMed  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  PubMed  CAS  Google Scholar 

  • Lerner A, Herschkovitz Y, Baudoin E, Nazaret S, Moënne-Loccoz Y, Okon Y, Jurkevitch E (2006) Effect of Azospirillum brasilense on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated intergenic spacer analysis. Soil Biol Biochem 38:1212–1218

    Article  CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    Article  CAS  Google Scholar 

  • Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620

    Article  PubMed  CAS  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiol Ecol 29:365–377

    Article  CAS  Google Scholar 

  • Lu Y, Conrad R (2005) In situ stable isotope probing of methanogenic Archaea in the rice rhizosphere. Science 309:1088–1090

    Article  PubMed  CAS  Google Scholar 

  • Lueders T, Wagner B, Claus P, Friedrich MW (2004) Stable isotope probing of rRNA and DNA reveals a dynamic methylotroph community and trophic interactions with fungi and protozoa in oxic rice field soil. Environ Microbiol 6:60–72

    Article  PubMed  CAS  Google Scholar 

  • Lupwayi NZ, Rice WA, Clayton GW (1998) Soil microbial diversity and community structure under wheat as influenced by tillage and crop rotation. Soil Biol Biochem 30:1733–1741

    Article  CAS  Google Scholar 

  • Lynch JM, Hobbie JE (1988) The terrestrial environment. In: Lynch JM, Hobbie JE (eds) Microorganisms in action: concepts and application in microbial ecology. Blackwell Scientific Publications, Oxford, GB, pp 103–131

    Google Scholar 

  • Marcial Gomes NC, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758–3766

    Article  CAS  Google Scholar 

  • Markelova NY, Kershentsev AS (1998) Isolation of a new strain of the genus Bdellovibrio from plant rhizosphere and its lytic spectrum. Microbiologya 67:837–841

    Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Marschner P, Crowley DE, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    Article  CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Kohler A et al (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92

    Article  PubMed  CAS  Google Scholar 

  • McCaig AE, Glover LA, Prosser JI (1999) Molecular analysis of bacterial community Structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730

    PubMed  CAS  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • Miller HJ, Henken G, Van Veen JA (1989) Variation and composition of bacterial populations in the rhizospheres of maize, wheat, and grass cultivars. Can J Microbiol 35:656–660

    Google Scholar 

  • Miller HJ, Liljeroth E, Henken G, Van Veen JA (1990) Fluctuations in the fluorescent pseudomonad and actinomycete populations of rhizosphere and rhizoplane during the growth of spring wheat. Can J Microbiol 36:254–258

    Article  Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different development stages of Medicago truncata Geartn. Cv. Jemalong line J5. New Phytol 170:165–175

    Article  PubMed  CAS  Google Scholar 

  • Nakayama N, Okumura M, Inoue K, Asakawa S, Kimura M (2007) Seasonal variations in the abundance of virus-like particles and bacteria in the floodwater of a Japanese paddy field. Soil Sci Plant Nut 53:420–429

    Article  Google Scholar 

  • Nehls U, Bock A, Einig W, Hampp R (2001) Excretion of two proteases by ectomycorrhizal fungus Amanita muscaria. Plant Cell Environ 24:741–747

    Article  CAS  Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2006) Isolation and characterization of nonpathogenic Fusarium oxysporum isolates from the rhizosphere of healthy banana plants. Plant Pathol 55:207–216

    Article  CAS  Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    Article  CAS  Google Scholar 

  • Nicol G, Webster G, Glover AL, Prosser JI (2004) Differential response of archaeal and bacterial communities to nitrogen inputs and pH changes in upland pasture rhizosphere soil. Environ Microbiol 6:861–867

    Article  PubMed  CAS  Google Scholar 

  • Nijhuis EH, Maat MJ, Zeegers IWE, Waalwijk C, Van Veen JA (1993) Selection of bacteria suitable for introduction into the rhizosphere of grass. Soil Biol Biochem 25:885–895

    Article  Google Scholar 

  • Nilsson H, Kristiansson E, Ryberg M, Larsson H (2005) Approaching the taxonomic affiliation of unidentified sequences in public databases – an example from the mycorrhizal fungi. BMC Bioinf 6:178–185

    Article  CAS  Google Scholar 

  • Nilsson H, Kristiansson E, Ryberg M, Hallenberg N, Larsson H (2008) Intraspecific ITS variability in the kingdom fungi as expressed in the internal sequence databases and its implications for molecular species identification. Evol Bioinfo 4:193–201

    Google Scholar 

  • Nouchi I, Mariko S, Aoki K (1990) Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiol 94:59–66

    Article  PubMed  CAS  Google Scholar 

  • Nouhra E, Horton T, Cazares E, Castellano M (2005) Morphological and molecular characterization of selected Ramaria mycorrhizae. Mycorrhiza 15:55–59

    Article  PubMed  CAS  Google Scholar 

  • Nygren CM, Edqvist J, Elfstrand M, Heller G, Taylor AFS (2007) Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17:241–248

    Article  PubMed  CAS  Google Scholar 

  • Olsson PA, Johnson NC (2005) Tracking carbon from the atmosphere to the rhizosphere. Ecol Lett 8:1264–1270

    Article  Google Scholar 

  • Olsson PA, Larsson L, Bago B, Wallander H, van Aarle IM (2003) Ergosterol and fatty acids for biomass estaimation of mycorrhizal fungi. New Phytol 159:7–10

    Article  CAS  Google Scholar 

  • Ochsenreiter T, Seleki D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16 S RNA surveys and real time PCR. Environ Microbiol 5:787–797

    Article  PubMed  CAS  Google Scholar 

  • Oved T, Shaviv A, Goldrath T, Mandelbaum R, Minz D (2001) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67:3426–3433

    Article  PubMed  CAS  Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2006) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173:600–610

    Article  CAS  Google Scholar 

  • Payne G, Ramette A, Rose HL, Weightman AJ Hefin T, James J, Tiedje M, Mahenthiralingam E (2006) Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol Let 259:126–132

    Article  CAS  Google Scholar 

  • Peter M, Ayer F, Egli S, Honegger R (2001) Above- and below-ground community structure of ectomycorrhizal fungi in three Norway spruce (Picea abies) stands in Switzerland. Can J Bot 79:1134–1151

    Article  Google Scholar 

  • Postma J, Schilder MT, Bloem J, Van Leeuwen-Haagsma WK (2008) Soil suppressiveness and functional diversity of the soil microflora in organic farming systems. Soil Biol Biochem 40:2394–2406

    Article  CAS  Google Scholar 

  • Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the Archaea: a unifying view. Nat Rev Micro 4:837–848

    Article  CAS  Google Scholar 

  • Radajewski S, Philip I, Nisha P, Colin MJ (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan B, Lueders T, Dunfield PF, Conrad R, Friedrich MW (2001) Archaeal community structures in rice soils from different geographical regions before and after initiation of methane production. FEMS Microbiol Ecol 37:175–186

    Article  CAS  Google Scholar 

  • Ramette A, LiPuma JJ, Tiedje JM (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 71:1193–1201

    Article  PubMed  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance ? New Phytol 157:475–492

    Article  Google Scholar 

  • Reichenbach H (2001) The genus Lysobacter. In: Dworkin M et al (eds) The prokaryotes: An evolving electronic resource for the microbiological community. Springer-Verlag, New York

    Google Scholar 

  • Renker C, Blanke V, Börstler B, Heinrichs J, Buscot F (2004) Diversity of Cryptococcus and Dioszegia yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Res 4:597–603

    Article  PubMed  CAS  Google Scholar 

  • Rosling A, Landerweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    Article  CAS  Google Scholar 

  • Schallmach E, Minz D, Jurkevitch E (2000) Culture-independent detection of shifts occurring in the structure of root-associated bacterial populations of common bean (Phaseolus vulgaris L) following nitrogen depletion. Microb Ecol 40:309–316

    PubMed  CAS  Google Scholar 

  • Salles JF, Van Elsas JD, Van Veen JA (2006) Effect of Agricultural management regime on Burkholderia community structure in soil. Microbiol Ecol 52:267–279

    Article  CAS  Google Scholar 

  • Scherff RH (1973) Control of bacterial blight of soybean by Bdellovibrio bacteriovorus. Phytopathol 63:400–402

    Google Scholar 

  • Schrey D, Schellhammer M, Ecke M, Hampp R, Tarkka M (2005) Mycorrhizal helper bacterium Streptomyces AcH505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  PubMed  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (2000) Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)—linking of 16 S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria. Appl Enviro Microbiol 66:3556–3565

    Article  CAS  Google Scholar 

  • Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Semenov AM, van Bruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microbiol Ecol 37:116–128

    Article  CAS  Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic T, Stralis-Pavese N, Tankouo, Sandjong B, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytologist 171:719–736

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Aneja MK, Mayer J, Munch JC, Schloter M (2005) Characterization of bacterial community structure in rhizosphere soil of grain legumes. Microb Ecol 49:407–415

    Article  PubMed  CAS  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent function and importance. Can J Bot 82:1140–1165

    Article  CAS  Google Scholar 

  • Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigeneous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Article  Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Comparison of crenarchaeal consortia inhabiting the rhizosphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70:1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elzas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18 S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Stafford WHL, Baker GC, Brown SA, Burton SG, Cowan DA (2005) Bacterial diversity in the rhizosphere of Proteaceae species. Environ Microbiol 7:1755–1768

    Article  PubMed  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphototrophic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  • Subke J-A, Hahn V, Battipaglia G, Linder S, Buchman N, Cotrufo MF (2004) Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia 139:551–559

    Article  PubMed  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    Article  CAS  Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi I, Saar I, Koljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmania wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    Article  PubMed  CAS  Google Scholar 

  • Timonen S, Marschner P (2005) Mycorrhizosphere concept. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer-Verlag, Berlin, pp 155–172

    Google Scholar 

  • Tiunov AV, Scheu S (2005) Arbuscular mycorrhiza and Collembola interact in affecting community compositionjof saprotrophic microfungi. Oecologia 142:636–642

    Article  PubMed  Google Scholar 

  • Treonis AM, Ostleb NJ, Stotth AW, Primrosea R, Graystona SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533–537

    Article  CAS  Google Scholar 

  • Trudell SA, Rygiewicz PT, Edmonds RL (2003) Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytol 160:391–401

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa. Science 313:1596

    Article  PubMed  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Pierrat JC, Mustin C, Frey-Klett P (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027

    Article  PubMed  CAS  Google Scholar 

  • Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Micro 5:316–323

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Mahé S, Ineson P, Staddon P, Ostle N, Cliquet J-B, Francez A-J, Fitter AH, Young PW (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc Nat Acad Sci 104:16970–16975

    Article  PubMed  Google Scholar 

  • Van der Wal A, van Veen JA, Pijl AS, Summerbell RC, de Boer W (2006) Constraints on development of fungal biomass and decomposition processes during restoration of arable sandy soils. Soil Biol Biochem 38:2890–2902

    Article  CAS  Google Scholar 

  • Van der Wal A, de Boer W, Smant W, van Veen JA (2007) Initial decay of woody fragments in soil is influenced by size, vertical position, nitrogen availability and soil origin. Plant Soil 301:189–201

    Article  CAS  Google Scholar 

  • Van Overbeek L, Van Elsas JD (2008) Effects of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    Article  PubMed  CAS  Google Scholar 

  • Van Elsas JD, Jansson J, Sjöling S, Bailey M, Nalin R, Vogel T, Costa R, Van Overbeek L (2008a) The metagenomics of disease-suppressive soils - Experiences from the METACONTROL project. Trend Biotechnol 26(11):591–601

    Article  CAS  Google Scholar 

  • Van Elsas JD, Speksnijder AJ, Van Overbeek LS (2008b) A novel procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Meth 75(3):515–522

    Article  CAS  Google Scholar 

  • Van Wees SCM, van der Ent S, Pieterse CJM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in the fine living roots of conifer seedlings. New Phytol 174:441–446

    Article  PubMed  CAS  Google Scholar 

  • Viebahn M, Veenman C, Wernars K, van Loon LC, Smit E, Bakker PAHM (2005) Assessment of differences in ascomycete communities in the rhizosphere of field-grown wheat and potato. FEMS Microbiol Ecol 53:245–253

    Article  PubMed  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma–plant–pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M (2007) Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea marina plants throughout nursery production chronosequences. Microbiol Ecol 54:672–684

    Article  CAS  Google Scholar 

  • Wallander H, Lindahl BD, Nilsson LO (2006) Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field. Mycorrhiza 16:213–217

    Article  PubMed  CAS  Google Scholar 

  • Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491

    Article  Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Env Microbiol 8:871–884

    Article  Google Scholar 

  • Whitham TG, Bailey JK, Schweitzer JA, Shuster SM, Bangert RK, LeRoy CJ et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  PubMed  CAS  Google Scholar 

  • Weete JD (1989) Structure and function of sterols in fungi. Adv Lipid Res 23:115–167

    CAS  Google Scholar 

  • Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycologia 13:41–47

    Google Scholar 

  • Williamson KE, Radosevich M, Wommack E (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    Article  PubMed  CAS  Google Scholar 

  • Woese C, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. PNAS 74:5088–5090

    Article  PubMed  CAS  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Sinninghe Damste J (2006) Archaeal nitrification in the ocean. PNAS 103:12317–12322

    Article  PubMed  CAS  Google Scholar 

  • Yang C-H, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Yergeau E, Kang S, He Z, Zhou J, Kowalchuk GA (2007) Functional microarray analysis of nitrogen and carbon cycling along an Antarctic latitudinal gradient. ISME J 1:163–179

    Article  PubMed  CAS  Google Scholar 

  • Zachow C, Tilcher R, Berg G (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55:119–129

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jurkevitch.

Additional information

Responsible Editor: Yves Dessaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buée, M., De Boer, W., Martin, F. et al. The rhizosphere zoo: An overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321, 189–212 (2009). https://doi.org/10.1007/s11104-009-9991-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9991-3

Navigation