Skip to main content
Log in

Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The rhizosphere microbiome plays a significant role in the life of plants in promoting plant survival under adverse conditions. However, limited information is available about microbial diversity in saline environments. In the current study, we compared the composition of the rhizosphere microbiomes of the halophytes Urochloa, Kochia, Salsola, and Atriplex living in moderate and high salinity environments (Khewra salt mines; Pakistan) with that of the non-halophyte Triticum. Soil microbiomes analysis using pyrosequencing of 16S rRNA gene indicated that Actinobacteria were dominant in saline soil samples whereas Proteobacteria predominated in non-saline soil samples. Firmicutes, Acidobacteria, Bacteriodetes and Thaumarchaeota were predominant phyla in saline and non-saline soils, whereas Cyanobacteria, Verrucomicrobia, Gemmatimonadetes and the unclassified WPS-2 were less abundant. Sequences from Euryarchaeota, Ignavibacteriae, and Nanohaloarchaeota were identified only from the rhizosphere of halophytes. Dominant halophilic bacteria and archaea identified in this study included Agrococcus, Armatimonadetes gp4, Halalkalicoccus, Haloferula and Halobacterium. Our analysis showed that increases in soil salinity correlated with significant differences in the alpha and beta diversity of the microbial communities across saline and non-saline soil samples. Having a complete inventory of the soil bacteria from different saline environments in Pakistan will help in the discovery of potential inoculants for crops growing on salt-affected land.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adviento-Borbe MA, Doran JW, Drijber RA, Dobermann A (2006) Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J Environ Qual 35:1999–2010

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Hussain M, Ashraf M, Luqman M, Ashraf MY, Khan ZI (2007) Indigenous vegetation of Soon valley at the risk of extinction. Pak J 39(3):679–690

    Google Scholar 

  • Ahmad MJ, Arshad M, Iqbal A, Khalid M, Akhtar N (2013) Rice production in salt-affected soils of Pakistan using different reclamation techniques. In: Shahid SA, Abdelfattah MA, Taha FK (eds), Developments in soil salinity assessment and reclamation: innovative thinking and use of marginal soil and water resources in irrigated agriculture Springer, Dordrecht, pp 283–293

    Chapter  Google Scholar 

  • Anderson JM, Ingram JS (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford, pp 93–94

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker AHM (2012) The rhizosphere microbiome and plant health. Trends in Plant Sci 17:478–486

    Article  CAS  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8:e56329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 14:1045

    Article  Google Scholar 

  • Buttigieg PL, Ramette A (2014) A Guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol 90:543–550

    Article  PubMed  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K et al (2010) QIIME allows analysis of high throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakraborty A, Bera A, Mukherjee A et al (2015) Changing bacterial profile of Sundarbans, the world heritage mangrove: impact of anthropogenic interventions. World J Microbiol Biotechnol 31(4):593–610

    Article  PubMed  CAS  Google Scholar 

  • Craita EB, Tom G (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:1–18

    Google Scholar 

  • Curlango-rivera G, Huskey DA, Mostafa A, Kessler JO, Xiong Z, Hawes MC (2013) Intraspecies variation in cotton border cell production: rhizosphere microbiome implications. Am J Bot 100:1706–1712

    Article  PubMed  Google Scholar 

  • Dagla HR, Shekhawat NS (2005) In vitro multiplication of Haloxylon recurvum (Moq.)—a plant for saline soil reclamation. J Plant Biol 7:155–160

    Google Scholar 

  • Dastgheib SM, Amoozegar MA, Khajeh K, Ventosa A (2011) A halotolerant Alcanivorax sp. strain with potential application in saline soil remediation. Appl Microbiol Biotech 90:305–312

    Article  CAS  Google Scholar 

  • DeBruyn J, Nixon L, Fawaz M, Johnson M, Radosevich M (2011) Global biogeography and quantitative season dynamics of Gemmatimonadetes in Soil. Appl Environ Microbiol 77(17):6295–6300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delgado-García M, Aguilar CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2014) Screening for extracellular hydrolytic enzymes production by different halophilic bacteria. Mycopathy 12(1):17–23

    Google Scholar 

  • Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J et al (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fert Soil 50:1–8

    Article  CAS  Google Scholar 

  • Deng S, Chang X, Zhang Y, Ren L, Jiang F, Qu Z, Peng F (2015) Nocardioides antarcticus sp. nov., isolated from marine sediment of Ardley cove. Int J Syst Evol Microbiol 65(8):2615–2621

    Article  PubMed  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K et al (2006) Green genes, a chimera checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodd IC, Perez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428

    Article  PubMed  CAS  Google Scholar 

  • Doxey AC, Kurtz DA, Lynch MDJ, Sauder LA, Neufeld JD (2015) Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J 9:461–471

    Article  PubMed  CAS  Google Scholar 

  • Fahmy T (2003) XLSTAT-Pro 7.0 (XLSTAT). Addinsoft, Paris

    Google Scholar 

  • Fierer N, Leff JW, Adams BJ et al (2012) Cross-biome metagenomic analyses of soilmicrobial communities and their functional attributes. Proc Natl Acad Sci USA 109:21390–21395

    Article  PubMed  Google Scholar 

  • Garrity GM, Holt JG (2001) Phylum AII. Euryarchaeota phy. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology volume 1: the archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer-Verlag, New York, pp 169–192

    Chapter  Google Scholar 

  • Gautier TD (2001) Detecting trends using Spearman’s rank correlation coefficient. Environ Forens 2:359–362

    Article  Google Scholar 

  • Ghollarata M, Raiesi F (2007) The adverse effects of soil salinization on the growth of Trifolium alexandrinum L. and associated microbial and biochemical properties in a soil from Iran. Soil Biol Biochem 39:1699–1702

    Article  CAS  Google Scholar 

  • Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan K, Chakrabarti K, Chattopadhyay D (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst 6:1–5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrica 40:237–264

    Article  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electron 4(1):9–13

    Google Scholar 

  • Henderson PA, Seaby RMH (2014) Community analysis package version 5. Pisces Conservation Ltd, Lymington

    Google Scholar 

  • Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590

    Article  PubMed  CAS  Google Scholar 

  • Krivushin K, Kondrashov F, Shmakova L, Tutukina M, Petrovskaya L, Rivkinaa E (2015) Two metagenomes from late Pleistocene northeast Siberian permafrost. Genome Announc 3(1):1380–1400

    Article  Google Scholar 

  • Langenheder S, Bulling MT, Solan M, Prosser JI (2010) Bacterial biodiversity–ecosystem functioning relations are modified by environmental complexity. PLoS ONE 5:e1083

    Article  CAS  Google Scholar 

  • Liszka M, Clark M, Schneider E, Clark DS (2012) Nature versus nurture: developing enzymes that function under extreme conditions. Ann Rev Chem Biomol Eng 3:77–102

    Article  CAS  Google Scholar 

  • López-López A, Yarza P, Richter M, Suárez-Suárez A et al (2010) Extremely halophilic microbial communities in anaerobic sediments from a solar saltern. Environ Microbiol Rep 2:258–271

    Article  PubMed  CAS  Google Scholar 

  • Ma B, Gong J (2013) A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils. World J Microbiol Biotechnol 29:2325–2334

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasool G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant growth promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mirza BS, Muruganandam S, Meng X, Sorensen DL, Dupont RR, McLean JE (2014) Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah. Appl Environ Microbiol 80:3198–3208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhtar S, Mirza MS, Awan HA, Maqbool A, Mehnaz S, Malik KA (2016) Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions. Pak J Bot 48:779–791

    CAS  Google Scholar 

  • Mukhtar S, Ishaq A, Hassan S, Mehnaz S, Mirza MS, Malik KA (2017) Comparison of microbial communities associated with halophyte (Salsola stocksii) and non-halophyte (Triticum aestivum) using culture-independent approaches. Pol J Microbiol 66:375–386

    Article  Google Scholar 

  • Mukhtar S, Mirza MS, Mehnaz S, Mirza BS, Malik KA (2018) Diversity of Bacillus-like bacterial community in the rhizospheric and non-rhizospheric soil of halophytes (Salsola stocksii and Atriplex amnicola) and characterization of osmoregulatory genes in halophilic Bacilli. Can J Microbiol 64:567–579

    Article  PubMed  CAS  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelbert KB, Banfield JF, Allen EE (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93

    Article  PubMed  CAS  Google Scholar 

  • Naz I, Bano A, Hassan T (2009) Morphological, biochemical and molecular characterization of rhizobia from halophytes of Khewra salt range and Attock. Pak J Bot 41(6):3159–3168

    CAS  Google Scholar 

  • Niemho N, Suriyachadkun C, Tamura T, Thawai C (2013) Asanoa siamensis sp. nov., isolated from soil from a temperate peat swamp forest. Int J Syst Evol Microbiol 63(1):66–71

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular, 939. USDA, Washington, DC, pp 1–19

    Google Scholar 

  • Pan Y, Cassman N, Hollander M, Mendes LW, Korevaar H, Geerts RHEM, van Veen JA, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90(1):195–205

    Article  PubMed  CAS  Google Scholar 

  • Rengasamy R (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Rincon-Florez VA, Carvalhais LC, Schenck PM (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581–612

    Article  Google Scholar 

  • Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F et al (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  • Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  • Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett W, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Gen Biol 12(6):R60

    Article  Google Scholar 

  • Tamaki H, Tanaka Y, Matsuzawa H, Muramatsu M, Meng XY et al (2011) Armatimonas rosea gen. nov., sp. nov., of a novel bacterial phylum, Armatimonadetes phyl. nov., formally called the candidate phylum OP10. Int J Syst Evol Microbiol 61:1442–1447

    Article  PubMed  Google Scholar 

  • Taprig T, Akaracharanya A, Sitdhipol J, Visessanguan W, Tanasupawat S (2013) Screening and characterization of protease-producing Virgibacillus, Halobacillus and Oceanobacillus strains from Thai fermented fish. J Appl Pharm Sci 3:025–030

    Google Scholar 

  • Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K et al (2006) Microbial biomass and its activities in salt-affected coastal soils. Biol Fertil Soil 42:273–277

    Article  Google Scholar 

  • Tsuda K, Nagano H, Ando A, Shima J, Ogawa J (2015) Isolation and characterization of psychrotolerant endospore-forming Sporosarcina species associated with minced fish meat (surimi). Int J Food Microbiol 199:15–22

    Article  PubMed  CAS  Google Scholar 

  • Vaisman N, Oren A (2009) Salisaeta longa gen. nov., sp. nov., a red, halophilic member of the Bacteroidetes. Int J Syst Evol Microbiol 59:2571–2574

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela-Encinas C, Neria-Gonzalez I, Alcantara-Hernandez RJ, Enriquez-Aragon JA, Estrada-Alvarado I, Hernandez-Rodriguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254

    Article  PubMed  CAS  Google Scholar 

  • Ventosa A, Mellado E, Sanchez-Porro C, Marquez MC (2008) Halophile and halotolerant microorganisms from soils. In: ds Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Springer-Verlag, Berlin, pp 87–115

    Chapter  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MG (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111(14):5266–5270

    Article  PubMed  CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Sheng H, He Y, Wu J, Jiang Y, Tam N, Zhou H (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol 78:8264–8271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanagawa K, Breuker A, Schippers A, Nishizawa M, Ijiri A, Hirai M, Takaki Y (2014) Microbial community stratification controlled by the subsea floor fluid flow and geothermal gradient at the Iheya north hydrothermal field in the Mid-Okinawa trough (integrated ocean drilling program expedition 331). Appl Environ Microbiol 80(19):6126–6135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  PubMed  CAS  Google Scholar 

  • Yousuf B, Sanadhya P, Keshri J. Jha B (2012) Comparative molecular analysis of chemolithoautitrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 12:150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Cao C, Guo L, Wu Q, Cui Z (2015) Soil properties, bacterial community composition, and metabolic diversity responses to soil salinization of a semiarid grassland in northeast China. J Soil Water Conserv 70(2):110–120

    Article  Google Scholar 

Download references

Acknowledgements

We are highly thankful to Higher Education Commission [Project # HEC (FD/2012/1843)] and Pakistan Academy of Sciences [Project # 5-9/PAS/2012/969] for research grants. We would like to express our gratitude to Mr. Mukhtar Ahmad (Assistant Professor), Dyal Singh College, Lahore, for assistance in statistical analyses. We are grateful to Prof. Ann M. Hirsch (UCLA) for the comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SM: Conducted experiment and prepared manuscript; BSM: pyrosequencing and data analysis; SM: manuscript preparation; MSM: supervised research and manuscript preparation; JM: pyrosequencing and data analysis; KAM: guided in experiment plan and edited manuscript.

Corresponding author

Correspondence to Kauser Abdulla Malik.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7037 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhtar, S., Mirza, B.S., Mehnaz, S. et al. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome. World J Microbiol Biotechnol 34, 136 (2018). https://doi.org/10.1007/s11274-018-2509-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2509-5

Keywords

Navigation