Skip to main content

Advertisement

Log in

The endosphere microbial communities, a great promise in agriculture

  • Review
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Agricultural food production and sustainability need intensification to address the current global food supply to meet human demand. The continuous human population increase and other anthropogenic activities threaten food security. Agrochemical inputs have long been used in conventional agricultural systems to boost crop productivity, but they are disadvantageous to a safe environment. Towards developing environmentally friendly agriculture, efforts are being directed in exploring biological resources from soil and plant microbes. The survival of the rhizosphere and endosphere microbiota is influenced by biotic and abiotic factors. Plant microbiota live interdependently with the host plants. Endophytes are regarded as colonizer microbes inhabiting and establishing microbial communities within the plant tissue. Their activities are varied and include fixing atmospheric nitrogen, solubilizing phosphate, synthesis of siderophores, secretion of metabolite-like compounds containing active biocontrol agents in the control of phytopathogens, and induced systemic resistance that stimulates plant response to withstand stress. Exploring beneficial endophyte resources in the formulation of bio-inoculants, such as biofertilizers, as an alternative to agrochemicals (fertilizers and pesticides) in developing environmentally friendly agriculture and for incorporation into crop breeding and disease control program is promising. Therefore, in this review, endosphere microbial ecology, associating environmental factors, and their roles that contribute to their effectiveness in promoting plant growth for maximum agricultural crop productivity were highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577

    CAS  PubMed  Google Scholar 

  • Alawiye TT, Babalola OO (2019) Bacterial diversity and community structure in typical plant rhizosphere. Diversity 11:179

    CAS  Google Scholar 

  • Ali S, Khan SA, Hamayun M, Iqbal A, Khan AL, Hussain A, Shah M (2019) Endophytic fungi from Caralluma acutangula can secrete plant growth promoting enzymes. Fresenius Environ Bull 28:2688–2696

    CAS  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Wani ZA, Ahmad T, Sultan P, Gupta S, Riyaz-Ul-Hassan S (2019) Community structure, spatial distribution, diversity and functional characterization of culturable endophytic fungi associated with Glycyrrhiza glabra L. Fungal Biol 123:373–383. https://doi.org/10.1016/j.funbio.2019.02.003

    Article  PubMed  Google Scholar 

  • Audipudi A, Chakicherla B, Bhore S (2017) Bacterial endophytes as biofertilizers and biocontrol agents for sustainable agriculture. Biotechnol Sustain 1:223–247

    Google Scholar 

  • Ayangbenro AS, Babalola OO, Aremu OS (2019) Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil. Chemosphere 231:113–120. https://doi.org/10.1016/j.chemosphere.2019.05.092

    Article  CAS  PubMed  Google Scholar 

  • Babalola OO, Fadiji AE, Ayangbenro AS (2020) Shotgun metagenomic data of root endophytic microbiome of maize (Zea mays L.). Data Brief 31:105893

    PubMed  PubMed Central  Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Afolabi OG, Hussain M, Qasim M, Wang L (2018) Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: an insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiol Res 217:34–50. https://doi.org/10.1016/j.micres.2018.08.016

    Article  PubMed  Google Scholar 

  • Banik A, Mukhopadhaya SK, Dangar TK (2016) Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243:799–812

    CAS  PubMed  Google Scholar 

  • Banik A, Dash GK, Swain P, Kumar U, Mukhopadhyay SK, Dangar TK (2019) Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under green house and field condition. Microbiol Res 219:56–65. https://doi.org/10.1016/j.micres.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  • Bargaz A, Lyamlouli K, Chtouki M, Zeroual Y, Dhiba D (2018) Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol 9:1606

    PubMed  PubMed Central  Google Scholar 

  • Bertani I, Abbruscato P, Piffanelli P, Subramoni S, Venturi V (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8:388–398

    CAS  PubMed  Google Scholar 

  • Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127

    CAS  Google Scholar 

  • Campos EVR, Proença PLF, Oliveira JL, Bakshi M, Abhilash PC, Fraceto LF (2019) Use of botanical insecticides for sustainable agriculture: future perspectives. Ecol Indic 105:483–495. https://doi.org/10.1016/j.ecolind.2018.04.038

    Article  CAS  Google Scholar 

  • Cheng YT, Zhang L, He SY (2019) Plant-microbe interactions facing environmental challenge. Cell Host Microbe 26:183–192. https://doi.org/10.1016/j.chom.2019.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury MEK, Bae H (2018) Bacterial endophytes isolated from mountain-cultivated ginseng (Panax ginseng Mayer) have biocontrol potential against ginseng pathogens. Biol Control 126:97–108

    Google Scholar 

  • Comby M, Lacoste S, Baillieul F, Profizi C, Dupont J (2016) Spatial and temporal variation of cultivable communities of co-occurring endophytes and pathogens in wheat. Front Microbiol 7:403

    PubMed  PubMed Central  Google Scholar 

  • Cui L, Yang C, Wei L, Li T, Chen X (2020) Isolation and identification of an endophytic bacteria Bacillus velezensis 8-4 exhibiting biocontrol activity against potato scab. Biol Control 141:104156

    CAS  Google Scholar 

  • da Silva LL, Veloso TG, Manhães JH, da Silva CC, de Queiroz MV (2020) The plant organs and rhizosphere determine the common bean mycobiome. Braz J Microbiol 51:765–772

    PubMed  PubMed Central  Google Scholar 

  • Daungfu O, Youpensuk S, Lumyong S (2019) Endophytic bacteria isolated from Citrus plants for biological control of Citrus canker in lime plants. Tropical Life Sci Res 30:73–88

    Google Scholar 

  • de Almeida Lopes K, Carpentieri-Pipolo V, Oro T, Stefani Pagliosa E, Degrassi G (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755

    PubMed  Google Scholar 

  • de Araujo ASF, Miranda ARL, Sousa RS, Mendes LW, Antunes JEL, Oliveira LMS, de Araujo FF, Melo VMM, Figueiredo MVB (2019) Bacterial community associated with rhizosphere of maize and cowpea in a subsequent cultivation. Appl Soil Ecol 143:26–34. https://doi.org/10.1016/j.apsoil.2019.05.019

    Article  Google Scholar 

  • de Fretes CE, Suryani R, Purwestri YA, Nuringtyas TR, Widianto D (2018) Diversity of endophytic bacteria in sweet sorghum (Sorghum bicolor (L.) Moench) and their potential for promoting plant growth. Ind J Sci Technol 11:200–209

    Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148. https://doi.org/10.1016/j.fbr.2018.10.001

    Article  Google Scholar 

  • Doni F, Mispan MS, Suhaimi NSM, Ishak N, Uphoff N (2019) Roles of microbes in supporting sustainable rice production using the system of rice intensification. Appl Microbiol Biotechnol 103:5131–5142

    CAS  PubMed  Google Scholar 

  • Duan C, Razavi BS, Shen G, Cui Y, Ju W, Li S, Fang L (2019) Deciphering the rhizobium inoculation effect on spatial distribution of phosphatase activity in the rhizosphere of alfalfa under copper stress. Soil Biol Biochem 137:107574. https://doi.org/10.1016/j.soilbio.2019.107574

    Article  CAS  Google Scholar 

  • Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A, Fekam FB (2019) Endophytic bacteria of desert cactus (Euphorbia trigonas Mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol Res 228:126302. https://doi.org/10.1016/j.micres.2019.126302

    Article  CAS  PubMed  Google Scholar 

  • Enebe MC, Babalola OO (2018) The influence of plant growth-promoting rhizobacteria in plant tolerance to abiotic stress: a survival strategy. Appl Microbiol Biotechnol 102:7821–7835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fadiji AE, Babalola OO (2020a) Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotechnol 8:467

    PubMed  PubMed Central  Google Scholar 

  • Fadiji AE, Babalola OO (2020b) Metagenomics methods for the study of plant-associated microbial communities: a review. J Microbiol Methods 170:105860

    CAS  PubMed  Google Scholar 

  • Fors RO, Júnior OJS, Carneiro MAC, Berbara RLL (2020) Selection of arbuscular mycorrhizal fungi for sugarcane in four soils with the presence of dark septate endophytes. Acta Sci Agron 42:42477–42477

    Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    CAS  PubMed  Google Scholar 

  • Gonzaga L, Costa L, Santos T, Araújo E, Queiroz M (2015) Endophytic fungi from the genus Colletotrichum are abundant in the P haseolus vulgaris and have high genetic diversity. J Appl Microbiol 118:485–496

    CAS  PubMed  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58

    PubMed  PubMed Central  Google Scholar 

  • Hong CE, Kim JU, Lee JW, Lee SW, Jo I-H (2018) Diversity of bacterial endophytes in Panax ginseng and their protective effects against pathogens. Biotechnol 8:397

    Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881

    CAS  PubMed  Google Scholar 

  • Jaber LR, Ownley BH (2018) Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens? Biol Control 116:36–45. https://doi.org/10.1016/j.biocontrol.2017.01.018

    Article  Google Scholar 

  • Jiao R, Munir S, He P, Yang H, Wu Y, Wang J, He P, Cai Y, Wang G, He Y (2020) Biocontrol potential of the endophytic Bacillus amyloliquefaciens YN201732 against tobacco powdery mildew and its growth promotion. Biol Control 143:104160

    CAS  Google Scholar 

  • Jordaan E, van der Waals JE, McLaren NW (2019) Effect of irrigation on charcoal rot severity, yield loss and colonization of soybean and sunflower. Crop Prot 122:63–69. https://doi.org/10.1016/j.cropro.2019.04.026

    Article  Google Scholar 

  • Jung MY, Kim JG, Sinninghe Damsté JS, Rijpstra WIC, Madsen EL, Kim SJ, Hong H, Si OJ, Kerou M, Schleper C (2016) A hydrophobic ammonia-oxidizing archaeon of the Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environ Microbiol Rep 8:983–992

    CAS  PubMed  Google Scholar 

  • Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Reg 35:1074–1087

    CAS  Google Scholar 

  • Kuźniar A, Włodarczyk K, Grządziel J, Goraj W, Gałązka A, Wolińska A (2019) Culture-independent analysis of an endophytic core microbiome in two species of wheat: Triticum aestivum L. (cv. ‘Hondia’) and the first report of microbiota in Triticum spelta L. (cv. ‘Rokosz’). Systematic Appl Microbiol 43:126025. https://doi.org/10.1016/j.syapm.2019.126025

    Article  CAS  Google Scholar 

  • Leff JW, Lynch RC, Kane NC, Fierer N (2017) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214:412–423

    CAS  PubMed  Google Scholar 

  • Li C, Li H, Yao T, Su M, Ran F, Han B, Li J, Lan X, Zhang Y, Yang X, Gun S (2019) Microbial inoculation influences bacterial community succession and physicochemical characteristics during pig manure composting with corn straw. Bioresour Technol 289:121653. https://doi.org/10.1016/j.biortech.2019.121653

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Watts DB, Kloepper JW, Torbert HA (2018) Influence of plant growth-promoting rhizobacteria on corn growth under different fertility sources. Comm Soil Sci Plant Analysis 49:1239–1255

    CAS  Google Scholar 

  • Liotti RG, da Silva Figueiredo MI, da Silva GF, de Mendonça EAF, Soares MA (2018) Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol Res 207:8–18

    PubMed  Google Scholar 

  • Liu Y, Yan H, Zhang X, Zhang R, Li M, Xu T, Yang F, Zheng H, Zhao J (2020) Investigating the endophytic bacterial diversity and community structures in seeds of genetically related maize (Zea mays L.) genotypes. Biotechnol 10:27

    Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24:3315–3335

    CAS  Google Scholar 

  • Maheshwari R, Bhutani N, Bhardwaj A, Suneja P (2019) Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: bioprospecting their plant growth potential. Biocatal Agric Biotechnol 20:101229. https://doi.org/10.1016/j.bcab.2019.101229

    Article  Google Scholar 

  • Mareque C, Taulé C, Beracochea M, Battistoni F (2015) Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol 65:1057–1067

    CAS  Google Scholar 

  • Moissl-Eichinger C, Pausan M, Taffner J, Berg G, Bang C, Schmitz RA (2018) Archaea are interactive components of complex microbiomes. Trends Microbiol 26:70–85

    CAS  PubMed  Google Scholar 

  • Moronta-Barrios F, Gionechetti F, Pallavicini A, Marys E, Venturi V (2018) Bacterial microbiota of rice roots: 16S-based taxonomic profiling of endophytic and rhizospheric diversity, endophytes isolation and simplified endophytic community. Microorganisms 6:14

    PubMed Central  Google Scholar 

  • Mousa W, Schwan A, Davidson J, Strange P, Liu H, Zhou T, Auzanneau F-I, Raizada M (2015) An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products. Front Microbiol 6:1157. https://doi.org/10.3389/fmicb.2015.01157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndungu SM, Messmer MM, Ziegler D, Gamper HA, Mészáros É, Thuita M, Vanlauwe B, Frossard E, Thonar C (2018) Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agric Ecosyst Environ 261:161–171

    PubMed  PubMed Central  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, fungi and archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16:3873

    CAS  PubMed Central  Google Scholar 

  • Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 92:152

    Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:1504

    PubMed Central  Google Scholar 

  • Ojuederie OB, Olanrewaju OS, Babalola OO (2019) Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: implications for sustainable agriculture. Agronomy 9:712

    CAS  Google Scholar 

  • Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166

    CAS  PubMed  Google Scholar 

  • Omomowo OI, Babalola OO (2019) Bacterial and fungal endophytes: tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 7:481

    PubMed Central  Google Scholar 

  • Orozco-Mosqueda MC, Rocha-Granados MC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31. https://doi.org/10.1016/j.micres.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  • Patel JK, Madaan S, Archana G (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 215:36–45

    CAS  PubMed  Google Scholar 

  • Paul C, Techen A-K, Robinson JS, Helming K (2019) Rebound effects in agricultural land and soil management: review and analytical framework. J Clean Prod 227:1054–1067. https://doi.org/10.1016/j.jclepro.2019.04.115

    Article  CAS  Google Scholar 

  • Pelo S, Mavumengwana V, Green E (2020) Diversity and antimicrobial activity of culturable fungal endophytes in Solanum mauritianum. Int J Environ Res Public Health 17:439

    CAS  PubMed Central  Google Scholar 

  • Pinto-Carbó M, Gademann K, Eberl L, Carlier A (2018) Leaf nodule symbiosis: function and transmission of obligate bacterial endophytes. Curr Opinion Plant Biol 44:23–31

    Google Scholar 

  • Polyak Y, Sukcharevich V (2019) Allelopathic interactions between plants and microorganisms in soil ecosystems. Biol Bull Rev 9:562–574

    Google Scholar 

  • Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microbiol 8:325

    PubMed  PubMed Central  Google Scholar 

  • Ramakrishna W, Yadav R, Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18. https://doi.org/10.1016/j.apsoil.2019.02.019

    Article  Google Scholar 

  • Renuka S, Ramanujam B (2016) Fungal endophytes from maize (Zea mays L.): isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J Pure Appl Microbiol 10:523–529

    CAS  Google Scholar 

  • Rojas EC, Jensen B, Jørgensen HJ, Latz MA, Esteban P, Ding Y, Collinge DB (2020) Selection of fungal endophytes with biocontrol potential against Fusarium head blight in wheat. Biol Control 144:104222

    CAS  Google Scholar 

  • Romão-Dumaresq AS, Dourado MN, Fávaro LCL, Mendes R, Ferreira A, Araujo WL (2016) Diversity of cultivated fungi associated with conventional and transgenic sugarcane and the interaction between endophytic Trichoderma virens and the host plant. PLoS One 11:e0158974

    PubMed  PubMed Central  Google Scholar 

  • Rostami S, Azhdarpoor A (2019) The application of plant growth regulators to improve phytoremediation of contaminated soils: a review. Chemosphere 220:818–827. https://doi.org/10.1016/j.chemosphere.2018.12.203

    Article  CAS  PubMed  Google Scholar 

  • Russo ML, Pelizza SA, Cabello MN, Stenglein SA, Vianna MF, Scorsetti AC (2016) Endophytic fungi from selected varieties of soybean (Glycine max L. Merr.) and corn (Zea mays L.) grown in an agricultural area of Argentina. Rev Arg de Microbiol 48:154–160

    Google Scholar 

  • Sadeghi F, Samsampour D, Seyahooei MA, Bagheri A, Soltani J (2020) Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): toward regulating the ascorbate–glutathione cycle. Sci Hortic 261:108991

    CAS  Google Scholar 

  • Sahu PK, Singh S, Gupta A, Singh UB, Brahmaprakash G, Saxena AK (2019) Antagonistic potential of bacterial endophytes and induction of systemic resistance against collar rot pathogen Sclerotium rolfsii in tomato. Biol Control 137:104014

    CAS  Google Scholar 

  • Salam M, Varma A (2019) Bacterial community structure in soils contaminated with electronic waste pollutants from Delhi NCR, India. Electron J Biotechnol 41:72–80. https://doi.org/10.1016/j.ejbt.2019.07.003

    Article  CAS  Google Scholar 

  • Samson R, Shah M, Yadav R, Sarode P, Rajput V, Dastager SG, Dharne MS, Khairnar K (2019) Metagenomic insights to understand transient influence of Yamuna River on taxonomic and functional aspects of bacterial and archaeal communities of River Ganges. Sci Total Environ 674:288–299. https://doi.org/10.1016/j.scitotenv.2019.04.166

    Article  CAS  PubMed  Google Scholar 

  • Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, Hüttel S (2019) Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 37:107344. https://doi.org/10.1016/j.biotechadv.2019.01.011

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  • Segaran G, Sathiavelu M (2019) Fungal endophytes: a potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol 21:101284. https://doi.org/10.1016/j.bcab.2019.101284

    Article  Google Scholar 

  • Shaikh AA, Parmar P, Rajkumar B, Patel D, Desai H, Solanki B (2017) Bioprospecting potential of endophytic bacteria from leaves of Gossypium hirsutum. Int J Curr Microbiol Appl Sci 6:1718–1730

    Google Scholar 

  • Sharma N, Singhvi R (2017) Effects of chemical fertilizers and pesticides on human health and environment: a review. Int J Agric Environ Biotechnol 10:675–680

    Google Scholar 

  • Sheirdil RA, Hayat R, Zhang X-X, Abbasi NA, Ali S, Ahmed M, Khattak JZK, Ahmad S (2019) Exploring potential soil bacteria for sustainable wheat (Triticum aestivum L.) production. Sustainability 11:3361

    CAS  Google Scholar 

  • Shen F-T, Yen J-H, Liao C-S, Chen W-C, Chao Y-T (2019) Screening of rice endophytic biofertilizers with fungicide tolerance and plant growth-promoting characteristics. Sustainability 11:1133

    CAS  Google Scholar 

  • Shymanovich T, Faeth SH (2019) Environmental factors affect the distribution of two Epichloë fungal endophyte species inhabiting a common host grove bluegrass (Poa alsodes). Ecol Evol 9:6624–6642

    PubMed  PubMed Central  Google Scholar 

  • Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, Fusi M, Borin S, Cardinale M (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223-225:33–43. https://doi.org/10.1016/j.micres.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  • Song GC, Im H, Jung J, Lee S, Jung MY, Rhee SK, Ryu CM (2019) Plant growth-promoting archaea trigger induced systemic resistance in Arabidopsis thaliana against Pectobacterium carotovorum and Pseudomonas syringae. Environ Microbiol 21:940–948

    CAS  PubMed  Google Scholar 

  • Sun B-T, Akutse KS, Xia X-F, Chen J-H, Ai X, Tang Y, Wang Q, Feng B-W, Goettel MS, You M-S (2018) Endophytic effects of Aspergillus oryzae on radish (Raphanus sativus) and its herbivore, Plutella xylostella. Planta 248:705–714

    CAS  PubMed  Google Scholar 

  • Thompson S, Tan Y, Neate S, Grams R, Shivas R, Lindbeck K, Aitken E (2018) Diaporthe novem isolated from sunflower (Helianthus annuus) and other crop and weed hosts in Australia. Eur J Plant Pathol 152:823–831

    Google Scholar 

  • Tyc O, Putra R, Gols R, Harvey JA, Garbeva P (2020) The ecological role of bacterial seed endophytes associated with wild cabbage in the United Kingdom. Microbiol Open 9:e00954

    Google Scholar 

  • Verma S, White J (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.). J Appl Microbiol 124:764–778

    CAS  PubMed  Google Scholar 

  • Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T (2017) Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: basic and agronomic aspects. Plant Sci 264:48–56. https://doi.org/10.1016/j.plantsci.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  • Vieira PDS, Motta CMS, Lima D, Torres JB, Quecine MC, Azevedo JL, Oliveira NT (2011) Endophytic fungi associated with transgenic and non-transgenic cotton. Mycol 2:91–97

    Google Scholar 

  • Watanabe T, Asakawa S, Hayano K (2020) Long-term submergence of non-methanogenic oxic upland field soils helps to develop the methanogenic archaeal community as revealed by pot and field experiments. Pedosphere 30:62–72

    Google Scholar 

  • Wolde-Meskel E, van Heerwaarden J, Abdulkadir B, Kassa S, Aliyi I, Degefu T, Wakweya K, Kanampiu F, Giller KE (2018) Additive yield response of chickpea (Cicer arietinum L.) to Rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152. https://doi.org/10.1016/j.agee.2018.01.035

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe ER, Ballhorn DJ (2020) Do foliar endophytes matter in litter decomposition? Microorganisms 8:446

    PubMed Central  Google Scholar 

  • Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y (2020) Biocontrol potential of a novel endophytic bacterium from mulberry (Morus) tree. Front Bioeng Biotechnol 7:488

    PubMed  PubMed Central  Google Scholar 

  • Xu T, Cao L, Zeng J, Franco CM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z (2019a) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pesticide Biochem Physiol 160:58–69

    CAS  Google Scholar 

  • Xu W, Wang F, Zhang M, Ou T, Wang R, Strobel G, Xiang Z, Zhou Z, Xie J (2019b) Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res 229:126328. https://doi.org/10.1016/j.micres.2019.126328

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biol 74:1031–1043

    Google Scholar 

  • Yang H, Ye W, Ma J, Zeng D, Rong Z, Xu M, Wang Y, Zheng X (2018) Endophytic fungal communities associated with field-grown soybean roots and seeds in the Huang-Huai region of China. PeerJ 6:e4713

    PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhang J, Liu Y, Guo Y, Shi P, Wei G (2018a) Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Sci Total Environ 27:20–27. https://doi.org/10.1016/j.scitotenv.2018.01.230

    Article  CAS  Google Scholar 

  • Zhang E-P, Tian Y, Li M, Shi M, Jiang Y, Ren R, Zhang S (2018b) Effects of various long-term fertilization regimes on soil microbial functional diversity in tomato rhizosphere soil. Acta Ecol Sin 38:5027–5036

    Google Scholar 

  • Zhou J, Li P, Meng D, Gu Y, Zheng Z, Yin H, Zhou Q, Li J (2020) Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environ Pollut 260:113990

    CAS  PubMed  Google Scholar 

  • Zida E, Thio I, Deleuran L, Wulff E, Lund O, Shetty P, Boelt B (2014) Fungal endophytes of sorghum in Burkina Faso: occurrence and distribution. Afr J Microbiol Res 8:3782–3793

    Google Scholar 

Download references

Acknowledgments

The Ph.D. stipend of Bartholomew Saanu Adeleke (BSA) is from the National Research Foundation (NRF) of South Africa (UID: 116100). Olubukola Oluranti Babalola (OOB) acknowledges NRF for the grant (UID: 123634) that supports work in her laboratory.

Funding

This study was funded by the National Research Foundation of South Africa (UID: 123634).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke, B.S., Babalola, O.O. The endosphere microbial communities, a great promise in agriculture. Int Microbiol 24, 1–17 (2021). https://doi.org/10.1007/s10123-020-00140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-020-00140-2

Keywords

Navigation