Skip to main content
Log in

Engineering Corynebacterium glutamicum for the production of pyruvate

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A Corynebacterium glutamicum strain with inactivated pyruvate dehydrogenase complex and a deletion of the gene encoding the pyruvate:quinone oxidoreductase produces about 19 mM l-valine, 28 mM l-alanine and about 55 mM pyruvate from 150 mM glucose. Based on this double mutant C. glutamicumaceEpqo, we engineered C. glutamicum for efficient production of pyruvate from glucose by additional deletion of the ldhA gene encoding NAD+-dependent l-lactate dehydrogenase (LdhA) and introduction of a attenuated variant of the acetohydroxyacid synthase (△C–T IlvN). The latter modification abolished overflow metabolism towards l-valine and shifted the product spectrum to pyruvate production. In shake flasks, the resulting strain C. glutamicumaceEpqoldhA △C–T ilvN produced about 190 mM pyruvate with a Y P/S of 1.36 mol per mol of glucose; however, it still secreted significant amounts of l-alanine. Additional deletion of genes encoding the transaminases AlaT and AvtA reduced l-alanine formation by about 50%. In fed-batch fermentations at high cell densities with adjusted oxygen supply during growth and production (0–5% dissolved oxygen), the newly constructed strain C. glutamicumaceEpqoldhA △C–T ilvNalaTavtA produced more than 500 mM pyruvate with a maximum yield of 0.97 mol per mole of glucose and a productivity of 0.92 mmol g −1(CDW)  h−1 (i.e., 0.08 g g(CDW) −1 h−1) in the production phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007a) Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623

    Article  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Holátko J, Bartek T, Oldiges M, Eikmanns BJ (2007b) l-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol 73:2079–2084

    Article  CAS  Google Scholar 

  • Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  Google Scholar 

  • Blombach B, Stephan H, Brigitte B, Eikmanns BJ (2009) Acetohydroxyacid synthase, a novel target for improvement of l-lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 75:419–427

    Article  CAS  Google Scholar 

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  Google Scholar 

  • Causey TB, Shanmugam KT, Yomano LP, Ingram LO (2004) Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA 101:2235–2240

    Article  CAS  Google Scholar 

  • Cicalese L, Hierholzer C, Subbotin V, Iyengar A, Rao AS, Stanko RT (1997) Protective effect of pyruvate during acute rejection of intestinal allografts: accompanied by up-regulation of inducible nitric oxide synthase mRNA. Transplant Proc 29:1813–1814

    Article  CAS  Google Scholar 

  • Cicalese L, Subbotin V, Rastellini C, Stanko RT, Rao AS, Fung JJ (1999) Preservation injury and acute rejection of rat intestinal grafts: protection afforded by pyruvate. J Gastrointest Surg 3:549–554

    Article  CAS  Google Scholar 

  • Cotellessa C, Manunta T, Ghersetich I, Brazzini B, Peris K (2004) The use of pyruvic acid in the treatment of acne. J Eur Acad Dermatol Venereol 18:275–278

    Article  CAS  Google Scholar 

  • DeBoer LW, Bekx PA, Han L, Steinke L (1993) Pyruvate enhances recovery of rat hearts after ischemia and reperfusion by preventing free radical generation. Am J Physiol 265:1571–1576

    Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145

    Article  CAS  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, USA, pp 13–16

    Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H (1991) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  Google Scholar 

  • Ghersetich I, Brazzini B, Peris K, Cotellessa C, Manunta T, Lotti T (2004) Pyruvic acid peels for the treatment of photoaging. Dermatol Surg 30:32–36

    Article  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Howard JW, Fraser WA (1932) Preparation of pyruvic acid. Org Synth Coll 1:475–480

    Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004a) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004b) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen deprivation-conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K (2009) Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191:940–948

    Article  CAS  Google Scholar 

  • Kato O, Youn JW, Stansen KC, Matsui D, Oikawa T, Wendisch VF (2010) Quinone-dependent d-lactate dehydrogenase Dld (Cg1027) is essential for growth of Corynebacterium glutamicum on d-lactate. BMC Microbiol 10:1471–2180

    Article  Google Scholar 

  • Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061

    Article  CAS  Google Scholar 

  • Lamprecht W, Heinz F (1983) Pyruvate. In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol VI, 3rd edn. Verlag Chemie Weinheim, Germany, pp 570–577

    Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  • Li Y, Chen J, Lun SY (2001) Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol 57:451–459

    Article  CAS  Google Scholar 

  • Liebl W (2006) The genus Corynebacterium—nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The prokaryotes, vol 3, 3rd edn. Springer, New York, pp 796–818

    Chapter  Google Scholar 

  • Litsanov B, Kabus A, Brocker M, Bott M (2011) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol, Epub ahead of print. doi:10.1111/j.1751-7915.2011.00310.x

  • Marienhagen J, Eggeling L (2008) Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on l-valine production. Appl Environ Microbiol 74:7457–7462

    Article  CAS  Google Scholar 

  • Marienhagen J, Kennerknecht N, Sahm H, Eggeling L (2005) Functional analysis of all aminotransferase proteins inferred from the genome sequence of Corynebacterium glutamicum. J Bacteriol 187:7639–46

    Article  CAS  Google Scholar 

  • Martínez I, Bennett GN, San KY (2010) Metabolic impact of the level of aeration during cell growth on anaerobic succinate production by an engineered Escherichia coli strain. Metab Eng 12:499–509

    Article  Google Scholar 

  • Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverin fermentation. Biosci Biotechnol Biochem 71:2130–2135

    Article  CAS  Google Scholar 

  • Nishimura T, Vertès AA, Shinoda Y, Inui M, Yukawa H (2007) Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897

    Article  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008a) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  Google Scholar 

  • Okino S, Suda M, Fujikura K, Inui M, Yukawa H (2008b) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Wendisch VF, Paul S, Eikmanns BJ, Sahm H (1997) Pyruvate carboxylase as an anaplerotic enzyme in Corynebacterium glutamicum. Microbiology 143:1095–1103

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Kreutzer C, Kalinowski J, Pátek M, Sahm H, Eikmanns BJ (1998) Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927

    Article  CAS  Google Scholar 

  • Roufs JB (1996) Pyruvate: does it amp endurance and burn more fat? Muscle Fitness 57:195–197

    Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  CAS  Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    Article  CAS  Google Scholar 

  • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the E. coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  Google Scholar 

  • Schneider J, Wendisch VF (2010) Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 88:859–868

    Article  CAS  Google Scholar 

  • Schneider J, Wendisch VF (2011) Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl Microbiol Biotechnol 91:17–30

    Article  CAS  Google Scholar 

  • Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018

    Article  CAS  Google Scholar 

  • Schreiner ME, Riedel C, Holátko J, Patek M, Eikmanns BJ (2006) Pyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects. J Bacteriol 188:1341–1350

    Article  CAS  Google Scholar 

  • Sekine H, Shimada T, Hayashi C, Ishiguro A, Tomita F, Yokota A (2001) H + −ATPase defect in Corynebacterium glutamicum abolishes glutamic acid production with enhancement of glucose consumption rate. Appl Microbiol Biotechnol 57:534–540

    Article  CAS  Google Scholar 

  • Smith KM, Cho KM, Liao JC (2010) Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol 87:1045–1055

    Article  CAS  Google Scholar 

  • Stanko RT, Robertson RJ, Galbreath RW, Reilly JJ, Greenawalt KD, Goss FL (1990) Enhanced leg exercise endurance with a high-carbohydrate diet and dihydroxyacetone and pyruvate. J Appl Physiol 69:1651–1656

    CAS  Google Scholar 

  • Stanko RT, Tietze DL, Arch JE (1992a) Body composition, energy utilization, and nitrogen metabolism with a severely restricted diet supplemented with dihydroxyacetone and pyruvate. Am J Clin Nutr 55:771–776

    CAS  Google Scholar 

  • Stanko RT, Tietze DL, Arch JE (1992b) Body composition, energy utilization, and nitrogen metabolism with a 4.25-MJ/d low-energy diet supplemented with pyruvate. Am J Clin Nutr 56:630–635

    CAS  Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  Google Scholar 

  • Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes—example: amino acids. J Biotechnol 129:181–190

    Article  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  Google Scholar 

  • Veit A, Rittmann D, Georgi T, Youn JW, Eikmanns BJ, Wendisch VF (2009) Pathway identification combining metabolic flux and functional genomics analyses: acetate and propionate activation by Corynebacterium glutamicum. J Biotechnol 140:75–83

    Article  CAS  Google Scholar 

  • Wendisch VF, Bott M, Eikmanns BJ (2006) Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol 9:268–274

    Article  CAS  Google Scholar 

  • Yokota A, Shimizu H, Terasawa Y, Takaoka N, Tomita F (1994a) Pyruvic acid production by a lipoic acid auxotroph of Escherichia coli W1485. Appl Microbiol Biotechnol 41:638–646

    Article  CAS  Google Scholar 

  • Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F (1994b) Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W1485lip2. Biosci Biotechnol Biochem 58:2164–2167

    Article  CAS  Google Scholar 

  • Zelić B, Gerharz T, Bott M, Vasić-Rački Đ, Wandrey C, Takors R (2003) Fed-batch process for pyruvate production by recombinant Escherichia coli YYC202 strain. Eng in Life Sci 3:299–305

    Article  Google Scholar 

  • Zhu Y, Eiteman MA, Altman R, Altman E (2008) High glycolytic flux improves pyruvate production by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 74:6649–6655

    Article  CAS  Google Scholar 

  • Zimmermann HF, Anderlei T, Büchs J, Binder M (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72:1157–1160

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Eggeling and J. Marienhagen (both IBG-1, Research Center Jülich) for providing plasmids pK19mobsacB ΔalaT and pK19mobsacB ΔavtA, V.Wendisch (Faculty of Biology and CeBiTec, University of Bielefeld) for providing plasmid pK19mobsacB ΔldhA, and M. Oldiges (IBG-1, Research Center Jülich) for technical advice. The support of the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (FNR grant 220-095-08A; BioProChemBB project, ERA-IB program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard J. Eikmanns.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieschalka, S., Blombach, B. & Eikmanns, B.J. Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94, 449–459 (2012). https://doi.org/10.1007/s00253-011-3843-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3843-9

Keywords

Navigation