Skip to main content

Advertisement

Log in

Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia colinarK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicumnarG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bonnefoy V, Demoss JA (1994) Nitrate reductases in Escherichia coli. Antonie Van Leeuwenhoek 66:47–56

    Article  CAS  Google Scholar 

  • Clegg S, Yu F, Griffiths L, Cole JA (2002) The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K-12: two nitrate and three nitrite transporters. Mol Microbiol 44:143–155

    Article  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  • Fritz C, Maass S, Kreft A, Bange FC (2002) Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun 70:286–291

    Article  CAS  Google Scholar 

  • Glaser P, Danchin A, Kunst F, Zuber P, Nakano MM (1995) Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J Bacteriol 177:1112–1115

    Article  CAS  Google Scholar 

  • Hoffmann T, Troup B, Szabo A, Hungerer C, Jahn D (1995) The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol Lett 131:219–225

    Article  CAS  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertes AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  Google Scholar 

  • Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin Cummings, London, pp 115–146

    Google Scholar 

  • Liebl W (2001) Corynebacterium nonmedical. In: Dworkin M et al (eds) The Prokaryotes. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    Article  CAS  Google Scholar 

  • Ohnishi J, Komatsu T, Sen K, Takeno S, Ikeda M (2006) In: Annual Meeting of Japan Society for bioscience, biotechnology, and agrochemistry, Kyoto, Japan, 27 March 2006

  • Patek M, Eikmanns BJ, Patek J, Sahm H (1996) Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. Microbiology 142:1297–1309

    Article  CAS  Google Scholar 

  • Reents H, Munch R, Dammeyer T, Jahn D, Hartig E (2006) The Fnr regulon of Bacillus subtilis. J Bacteriol 188:1103–1112

    Article  CAS  Google Scholar 

  • Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G (2005) Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys–Tyr bond in the active site. J Biol Chem 280:27319–27328

    Article  CAS  Google Scholar 

  • Shen XH, Jiang CY, Huang Y, Liu ZP, Liu SJ (2005) Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol 71:3442–3452

    Article  CAS  Google Scholar 

  • Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256

    Article  CAS  Google Scholar 

  • Spiro S (1994) The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek 66:23–36

    Article  CAS  Google Scholar 

  • Stewart V (1982) Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol 151:1320–1325

    Article  CAS  Google Scholar 

  • Suzuki N, Okai N, Nonaka H, Tsuge Y, Inui M, Yukawa H (2006) High-throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl Environ Microbiol 72:3750–3755

    Article  CAS  Google Scholar 

  • Terasawa M, Yukawa H (1993) Industrial production of biochemicals by native immobilization. In: Kobayashi T (ed) Industrial production of biochemicals by native immobilized biocatalyst. Dekker, New York, pp 37–52

    Google Scholar 

  • Wayne LG, Doubek JR (1965) Classification and identification of mycobacteria. II. Tests employing nitrate and nitrite as substrates. Am Rev Respir Dis 91:738–745

    CAS  PubMed  Google Scholar 

  • Wayne LG, Hayes LG (1998) Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis 79:127–132

    Article  CAS  Google Scholar 

  • Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC (2000) Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35:1017–1025

    Article  CAS  Google Scholar 

  • Wood NJ, Alizadeh T, Bennett S, Pearce J, Ferguson SJ, Richardson DJ, Moir JW (2001) Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J Bacteriol 183:3606–3613

    Article  CAS  Google Scholar 

  • Wood NJ, Alizadeh T, Richardson DJ, Ferguson SJ, Moir JW (2002) Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 44:157–170

    Article  CAS  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertes AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum Group and complete genome sequence of strain R. Microbiology (in press)

  • Zimmermann HF, Anderlei T, Buchs J, Binder M (2006) Oxygen limitation is a pitfall during screening for industrial strains. Appl Microbiol Biotechnol 72:1157–1160

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank C. A. Omumasaba (Research Institute of Innovative Technology for the Earth) for helpful comments on the manuscript.

This work was financially supported in part by the New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, T., Vertès, A.A., Shinoda, Y. et al. Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75, 889–897 (2007). https://doi.org/10.1007/s00253-007-0879-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0879-y

Keywords

Navigation