Skip to main content
Log in

Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95 % of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W (2014) Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab Eng 24:150–159

    Article  CAS  PubMed  Google Scholar 

  • Emmerling M, Bailey JE, Sauer U (1999) Glucose catabolism of Escherichia coli strains with increased activity and altered regulation of key glycolytic enzymes. Metab Eng 1:117–127

    Article  CAS  PubMed  Google Scholar 

  • Emmerling M, Bailey JE, Sauer U (2000) Altered regulation of pyruvate kinase or co-overexpression of phosphofructokinase increases glycolytic fluxes in resting Escherichia coli. Biotechnol Bioeng 67:623–627

    Article  CAS  PubMed  Google Scholar 

  • Farwick A, Bruder S, Schadeweg V, Oreb M, Boles E (2014) Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc Natl Acad Sci U S A 111:5159–5164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goncalves DL, Matsushika A, de Sales BB, Goshima T, Bon EP, Stambuk BU (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym Microb Technol 63:13–20

    Article  CAS  Google Scholar 

  • Hasegawa S, Uematsu K, Natsuma Y, Suda M, Hiraga K, Jojima T, Inui M, Yukawa H (2012) Improvement of the redox balance increases L-valine production by Corynebacterium glutamicum under oxygen deprivation. Appl Environ Microbiol 78:865–875

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hasegawa S, Suda M, Uematsu K, Natsuma Y, Hiraga K, Jojima T, Inui M, Yukawa H (2013) Engineering of Corynebacterium glutamicum for high-yield L-valine production under oxygen deprivation conditions. Appl Environ Microbiol 79:1250–1257

  • Huerta-Beristain G, Utrilla J, Hernandez-Chavez G, Bolivar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 Is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64

    Article  CAS  PubMed  Google Scholar 

  • Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004a) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H (2004b) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196

    Article  CAS  PubMed  Google Scholar 

  • Jojima T, Inui M, Yukawa H (2013) Biorefinery Applications of Corynebacterium glutamicum. In: Yukawa H, Inui M (eds) Corynebacterium glutamicum. Springer, Berlin

    Google Scholar 

  • Kawaguchi H, Vertès AA, Okino S, Inui M, Yukawa H (2006) Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol 72:3418–3428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H (2008) Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol 77:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S (1985) Glutamic acid bacteria. In: A L Demain and N A Solomon (eds) Biology of Industrial Microorganisms Benjamin Cumings. London pp 115–146

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Inui M, Yukawa H (2001) The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 3:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Jellison T, Alper HS (2014) Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol Biofuels 7:122

    PubMed Central  PubMed  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–480

    Article  CAS  PubMed  Google Scholar 

  • Oreb M, Dietz H, Farwick A, Boles E (2012) Novel strategies to improve co-fermentation of pentoses with D-glucose by recombinant yeast strains in lignocellulosic hydrolysates. Bioengineering 3:347–351

    Article  Google Scholar 

  • Peter Smits H, Hauf J, Müller S, Hobley TJ, Zimmermann FK, Hahn-Hägerdal B, Nielsen J, Olsson L (2000) Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast 16:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Tsuchida Y, Nakamoto H, Okino S, Ichihashi O, Kawaguchi H, Watanabe T, Inui M, Yukawa H (2007) Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R. Appl Environ Microbiol 73:2349–2353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Inui M, Yukawa H (2008) Simultaneous utilization of D-cellobiose, D-glucose, and D-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 81:691–699

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H (2009) Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol 85:105–115

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Jojima T, Inoue T, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Smith J, van Rensburg E, Gorgens JF (2014) Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol 14:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Suzuki N, Nonaka H, Tsuge Y, Okayama S, Inui M, Yukawa H (2005) Multiple large segment deletion method for Corynebacterium glutamicum. Appl Microbiol Biotechnol 69:151–161

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, Inui M, Yukawa H (2012) Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 78:4447–4457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H (2013) Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng 110:2938–2948

    Article  CAS  PubMed  Google Scholar 

  • Young EM, Tong A, Bui H, Spofford C, Alper HS (2014) Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc Natl Acad Sci U S A 111:131–136

    Article  PubMed Central  PubMed  Google Scholar 

  • Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda M, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Inui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jojima, T., Noburyu, R., Sasaki, M. et al. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum . Appl Microbiol Biotechnol 99, 1165–1172 (2015). https://doi.org/10.1007/s00253-014-6223-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6223-4

Keywords

Navigation