Skip to main content
Log in

Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on l-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the l-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and l-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific l-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific l-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific l-lysine yield by 6 and 56%, respectively. In addition to l-lysine, significant amounts of pyruvate, l-alanine and l-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve l-lysine production by engineering the l-lysine biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bergmeyer HU (1983) Methods of enzymatic analysis, vol VI, 3rd edn. Verlag Chemie, Weinheim, pp 59–66

    Google Scholar 

  • Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ (2007) l-Valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl Environ Microbiol, in press

  • Cremer J, Treptow C, Eggeling L, Sahm H (1988) Regulation of the enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–3229

    PubMed  CAS  Google Scholar 

  • Cremer J, Eggeling L, Sahm H (1991) Control of the lysine biosynthesis sequence in Corynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57:1746–1752

    Article  CAS  Google Scholar 

  • de Graaf AA, Eggeling L, Sahm H (2001) Metabolic engineering for l-lysine production by Corynebacterium glutamicum. Adv Biochem Eng Biotechnol 73:9–29

    PubMed  Google Scholar 

  • Eggeling L, Oberle S, Sahm H (1998) Improved l-lysine yield with Corynebacterium glutamicum: use of dapA resulting in increased flux combined with growth limitation. Appl Microbiol Biotechnol 49:24–30

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Metzger M, Reinscheid D, Kircher M, Sahm H (1991) Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34:617–622

    Article  CAS  Google Scholar 

  • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke KU, Sahm H (1994) Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  CAS  Google Scholar 

  • Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab Eng 7:291–301

    Article  CAS  Google Scholar 

  • Guest JR, Creaghan IT (1974) Further studies with lipoamide dehydrogenase mutants of Escherichia coli K12. J Gen Microbiol 81:237–245

    PubMed  CAS  Google Scholar 

  • Hanahan D (1985) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  Google Scholar 

  • Ikeda M (2003) Amino acid production process. Adv Biochem Eng Biotechnol 79:1–35

    PubMed  CAS  Google Scholar 

  • Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine. Appl Microbiol Biotechnol, in press

  • Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Puhler A (1991) Genetic and biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol 5:1197–1204

    Article  CAS  Google Scholar 

  • Kelle R, Hermann T, Bathe B (2005) l-lysine production: In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 465–488

    Google Scholar 

  • Kimura E (2005) l-Glutamate production. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 439–463

    Chapter  Google Scholar 

  • Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivates: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    Article  CAS  Google Scholar 

  • Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 9–34

    Chapter  Google Scholar 

  • Marx A, Hans S, Mockel B, Bathe B, de Graaf AA (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    Article  CAS  Google Scholar 

  • Menkel E, Thierbach G, Eggeling L, Sahm H (1989) Influence of increased aspartate availability on lysine formation by a recombinant strain of Corynebacterium glutamicum and utilization of fumarate. Appl Environ Microbiol 55:684–688

    Article  CAS  Google Scholar 

  • Nakayama K, Tanaka H, Hagino H, Kinoshita S (1966) Studies on lysine fermentation. Part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde–pyruvate condensation in Micrococcus glutamicus. Agric Biol Chem 30:611–616

    CAS  Google Scholar 

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  Google Scholar 

  • Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    Article  CAS  Google Scholar 

  • Petersen S, Mack C, de Graaf AA, Riedel C, Eikmanns BJ, Sahm H (2001) Metabolic consequences of altered phosphoenolpyruvate carboxykinase activity in Corynebacterium glutamicum reveal anaplerotic mechanisms in vivo. Metab Eng 3:344–361

    Article  CAS  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    PubMed  CAS  Google Scholar 

  • Pfefferle W, Möckel B, Bathe B, Marx A (2003) Biotechnological manufacture of lysine. Adv Biochem Eng Biotechnol 79:59–112

    PubMed  CAS  Google Scholar 

  • Riedel C, Rittmann D, Dangel P, Möckel B, Sahm H, Eikmanns BJ (2001) Characterization, expression, and inactivation of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583

    PubMed  CAS  Google Scholar 

  • Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899–910

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW, Irwin N, Janssen UA (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Schreiner ME, Fiur D, Holátko J, Pátek M, Eikmanns BJ (2005) E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum: molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018

    Article  CAS  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functional split pathway for lysine biosynthesis in Corynebacterium glutamicum. J Bacteriol 173:4510–4516

    Article  CAS  Google Scholar 

  • Schrumpf B, Eggeling L, Sahm H (1992) Isolation and prominent characteristics of an l-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37:566–571

    Article  CAS  Google Scholar 

  • Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase in Brevibacterium flavum. J Biochem (Tokyo) 5:849–859

    Article  Google Scholar 

  • Shiio I, Ozaki H, Ujigawa-Takeda K (1982) Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric Biol Chem 46:101–107

    CAS  Google Scholar 

  • Shiio I, Toride Y, Sugimoto S (1984) Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem 48:3091–3098

    CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany, in press

  • Sonntag K, Eggeling L, de Graaf AA, Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis in Corynebacterium glutamicum: quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213:1325–1331

    Article  CAS  Google Scholar 

  • van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogenic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  Google Scholar 

  • Wittmann C, Becker J (2007) The l-Lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg, Germany, in press

Download references

Acknowledgement

We thank Brigitte Bathe for providing C. glutamicum DM1729 and Lothar Eggeling for providing plasmids pJC33, pJC40 and pJC50. The support of the Fachagentur Nachwachsende Rohstoffe of the BMVEL (grant 04NR004/22000404) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard J. Eikmanns.

Additional information

This study is dedicated to Prof. Dr. Hermann Sahm on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blombach, B., Schreiner, M.E., Moch, M. et al. Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum . Appl Microbiol Biotechnol 76, 615–623 (2007). https://doi.org/10.1007/s00253-007-0904-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0904-1

Keywords

Navigation