Skip to main content
Log in

Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hartley AJ, Chong G, Houston J, Mather AE (2005) 150 million years of climatic stability: evidence from the Atacama Desert, northern Chile. J Geol Soc London 162:421–424. doi:10.1144/0016-764904-071

    Article  Google Scholar 

  2. Clarke JDA (2006) Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73:101–114. doi:10.1016/j.geomorph.2005.06.008

    Article  Google Scholar 

  3. Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth-Science Rev 63:249–293. doi:10.1016/S0012-8252(03)00037-0

    Article  CAS  Google Scholar 

  4. McKay CP, Friedmann EI, Gomez-Silva B, Caceres-Villanueva L, Andersen DT, Landheim R (2003) Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: Four years of observations including the El Nino of 1997-1998. Astrobiology 3:393–406

    Article  PubMed  CAS  Google Scholar 

  5. Stoertz GE, Ericksen GE (1974) Geology of salars in Northern Chile. US Geological Survey professional paper, Washington, DC

  6. Horizon Information Portal. http://sad.dga.cl/ipac20/ipac.jsp?session=1421X12D9292W.440830&profile=cirh&source=~!biblioteca&view=subscriptionsummary&uri=full=3100001~!209~!0&ri=1&aspect=subtab13&menu=search&ipp=20&spp=20&staffonly=&term=Klohn,+Wulf&index=AUTHOR&uindex=&aspect=subtab13&menu=search&ri=1. Accessed 17 Jan 2015

  7. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504. doi:10.1007/s00792-008-0153-y

    Article  PubMed  CAS  Google Scholar 

  8. Rasuk MC, Kurth D, Flores MR, Contreras M, Novoa F, Poire D, Farias ME (2014) Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert. Microb Ecol 68:483–494. doi:10.1007/s00248-014-0431-4

    Article  PubMed  CAS  Google Scholar 

  9. Farías ME, Contreras M, Rasuk MC, Kurth D, Flores MR, Poiré DG, Novoa F, Visscher PT (2014) Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama Chile. Extremophiles. doi:10.1007/s00792-013-0617-6

    Google Scholar 

  10. Demergasso C, Chong G, Galleguillos P, Escudero L, Martínez-alonso M, Esteve I (2003) Tapetes microbianos del Salar de Llamará, norte de Chile. Rev Chil Hist Nat 76:485–499. doi:10.4067/S0716-078X2003000300012

    Article  Google Scholar 

  11. Wierzchos J, Ascaso C, McKay CP (2006) Endolithic Cyanobacteria in Halite Rocks from the Hyperarid Core of the Atacama Desert

  12. Dorador C, Meneses D, Urtuvia V, Demergasso C, Vila I, Witzel K-P, Imhoff JF (2009) Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile. J Geophys Res 114:G00D05. doi:10.1029/2008JG000837

    Google Scholar 

  13. De Los RA, Valea S, Ascaso C, Davila A, Kastovsky J, McKay CP, Gómez-Silva B, Wierzchos J (2010) Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. Int Microbiol 13:79–89

    Google Scholar 

  14. Stivaletta N, Barbieri R, Cevenini F, López-García P (2011) Physicochemical Conditions and Microbial Diversity Associated with the Evaporite Deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95. doi:10.1080/01490451003653102

    Article  CAS  Google Scholar 

  15. Des Marais DJ (1990) Microbial mats and the early evolution of life. Trends Ecol Evol 5:140–144

    Article  PubMed  CAS  Google Scholar 

  16. Byerly GR, Lower DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491. doi:10.1038/319489a0

    Article  CAS  Google Scholar 

  17. Cohen Y (1984) Microbial mats, stromatolites : based on the proceedings of the Integrated Approach to the Study of Microbial Mats, July 26-31, 1982, sponsored by microbial ecology and marine ecology courses, and the. A.R. Liss, New York

  18. Navarro-Gonzalez R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, De La Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science (80- ) 302:1018–1021. doi:10.1126/science.1089143

    Article  CAS  Google Scholar 

  19. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedrós-Alió C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69. doi:10.1016/j.femsec.2003.12.013

    Article  PubMed  CAS  Google Scholar 

  20. Maier RM, Drees KP, Neilson JW, Henderson DA, Quade J, Betancourt JL (2004) Microbial life in the Atacama Desert. Science 306:1289–1290. doi:10.1126/science.306.5700.1289c, author reply 1289–90

    Article  PubMed  CAS  Google Scholar 

  21. Drees KP, Neilson JW, Betancourt JL, Quade J, Henderson DA, Pryor BM, Maier RM (2006) Bacterial community structure in the hyperarid core of the Atacama Desert, Chile. Appl Environ Microbiol 72:7902–7908. doi:10.1128/AEM.01305-06

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Wierzchos J, Cámara B, de Los RA, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, McKay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9:44–60. doi:10.1111/j.1472-4669.2010.00254.x

    Article  PubMed  CAS  Google Scholar 

  23. Dorador C, Vila I, Imhoff JF, Witzel K-P (2008) Cyanobacterial diversity in Salar de Huasco, a high altitude saline wetland in northern Chile: an example of geographical dispersion? FEMS Microbiol Ecol 64:419–432. doi:10.1111/j.1574-6941.2008.00483.x

    Article  PubMed  CAS  Google Scholar 

  24. Stivaletta N, Barbieri R, Billi D (2012) Microbial colonization of the salt deposits in the driest place of the Atacama Desert (Chile). Orig Life Evol Biosph 42:187–200. doi:10.1007/s11084-012-9289-y

    Article  PubMed  CAS  Google Scholar 

  25. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C, Schmidt SK (2012) The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J Geophys Res Biogeosciences 117:n/a–n/a. doi: 10.1029/2012JG001961

  26. Clesceri LS, Greenberg AE, Eaton AD (1998) No Title. Stand. methods Exam. water wastewater

  27. Brindley GW, Brown G (1980) Crystal structures of clay minerals and their X-ray identification

  28. Moore DM, Reynolds RC. J (1989) X-ray diffraction and the identification and analysis of clay minerals

  29. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Farías ME, Rascovan N, Toneatti DM, Albarracín VH, Flores MR, Poiré DG, Collavino MM, Aguilar OM, Vazquez MP, Polerecky L (2013) The discovery of stromatolites developing at 3570 m above sea level in a high-altitude volcanic lake Socompa, Argentinean Andes. PLoS One 8, e53497. doi:10.1371/journal.pone.0053497

    Article  PubMed Central  PubMed  Google Scholar 

  31. Braak CJF ter, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5)

  32. Oren A (1990) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie Van Leeuwenhoek 58:291–298. doi:10.1007/BF00399342

    Article  PubMed  CAS  Google Scholar 

  33. Ventosa A, Fernández AB, León MJ, Sánchez-Porro C, Rodriguez-Valera F (2014) The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18:811–824. doi:10.1007/s00792-014-0681-6

    Article  PubMed  CAS  Google Scholar 

  34. Costello EK, Halloy SRP, Reed SC, Sowell P, Schmidt SK (2009) Fumarole-Supported Islands of Biodiversity within a Hyperarid, High-Elevation Landscape on Socompa Volcano, Puna de Atacama, Andes. Appl. Environ. Microbiol. AEM

  35. Schmidt SK, Nemergut DR, Miller AE, Freeman KR, King AJ, Seimon A (2009) Microbial activity and diversity during extreme freeze-thaw cycles in periglacial soils, 5400 m elevation, Cordillera Vilcanota, Perú. Extremophiles 13:807–816. doi:10.1007/s00792-009-0268-9

    Article  PubMed  CAS  Google Scholar 

  36. Wintzingerode FV, Göbel UB, Stackebrandt E (2006) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229. doi:10.1111/j.1574-6976.1997.tb00351.x

    Article  Google Scholar 

  37. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Spear JR, Krumholz LR (2003) Bacterial Diversity and Sulfur Cycling in a Mesophilic Sulfide-Rich Spring. Appl Environ Microbiol 69:5609–5621. doi:10.1128/AEM.69.9.5609-5621.2003

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Spear JR, Ley RE, Berger AB, Pace NR Complexity in Natural Microbial Ecosystems : The Guerrero Negro Experience

  39. Burns BP, Goh F, Allen M, Neilan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101. doi:10.1111/j.1462-2920.2004.00651.x

    Article  PubMed  CAS  Google Scholar 

  40. Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 72:3685–3695. doi:10.1128/AEM.72.5.3685-3695.2006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617. doi:10.1007/s00248-006-9193-y

    Article  PubMed  CAS  Google Scholar 

  42. Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP, Dupraz C, Visscher PT (2009) Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ Microbiol 11:2710–2719. doi:10.1111/j.1462-2920.2009.01998.x

    Article  PubMed  Google Scholar 

  43. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365. doi:10.1128/AEM.71.11.7352-7365.2005

    Article  PubMed Central  PubMed  Google Scholar 

  44. Demergasso C, Dorador C, Meneses D, Blamey J, Cabrol N, Escudero L, Chong G (2010) Prokaryotic diversity pattern in high-altitude ecosystems of the Chilean Altiplano. J Geophys Res 115:G00D09. doi:10.1029/2008JG000836

    Google Scholar 

  45. Dorador C (2007) Microbial diversity in high altitude wetlands of the Chilean altiplano: phylogeny, diversity and function. University of Kiel

  46. Barbieri R, Stivaletta N (2011) Continental evaporites and the search for evidence of life on Mars. Geol J 46:513–524. doi:10.1002/gj.1326

    Article  CAS  Google Scholar 

  47. Sahl JW, Pace NR, Spear JR (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl Environ Microbiol 74:6444–6446. doi:10.1128/AEM.00879-08

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    Article  PubMed  CAS  Google Scholar 

  49. Makhdoumi-Kakhki A, Amoozegar MA, Ventosa A (2012) Salinibacter iranicus sp. nov. and Salinibacter luteus sp. nov., isolated from a salt lake, and emended descriptions of the genus Salinibacter and of Salinibacter ruber. Int J Syst Evol Microbiol 62:1521–1527. doi:10.1099/ijs.0.031971-0

    Article  PubMed  CAS  Google Scholar 

  50. Urios L, Intertaglia L, Lesongeur F, Lebaron P (2008) Balneola alkaliphila sp. nov., a marine bacterium isolated from the Mediterranean Sea. Int J Syst Evol Microbiol 58:1288–1291. doi:10.1099/ijs.0.65555-0

    Article  PubMed  CAS  Google Scholar 

  51. Urios L, Agogué H, Lesongeur F, Stackebrandt E, Lebaron P (2006) Balneola vulgaris gen. nov., sp. nov., a member of the phylum Bacteroidetes from the north-western Mediterranean Sea. Int J Syst Evol Microbiol 56:1883–1887. doi:10.1099/ijs.0.64285-0

    Article  PubMed  CAS  Google Scholar 

  52. Miroshnichenko ML (2003) Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329. doi:10.1099/ijs.0.02390-0

    Article  PubMed  CAS  Google Scholar 

  53. Jumas-Bilak E, Roudière L, Marchandin H (2009) Description of “Synergistetes” phyl. nov. and emended description of the phylum “Deferribacteres” and of the family Syntrophomonadaceae, phylum “Firmicutes”. Int J Syst Evol Microbiol 59:1028–1035. doi:10.1099/ijs.0.006718-0

    Article  PubMed  CAS  Google Scholar 

  54. Voordeckers JW, Starovoytov V, Vetriani C (2005) Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55:773–779. doi:10.1099/ijs.0.63430-0

    Article  PubMed  CAS  Google Scholar 

  55. Friedrich MW, Pommerenke B, Seifert R, Krueger M (2007) Unexpected Microbial Diversity in Anaerobically Methane-oxidizing Mats of the Black Sea. Am. Geophys. Union

  56. Siegert M, Taubert M, Seifert J, von Bergen-Tomm M, Basen M, Bastida F, Gehre M, Richnow H-H, Krüger M (2013) The nitrogen cycle in anaerobic methanotrophic mats of the Black Sea is linked to sulfate reduction and biomass decomposition. FEMS Microbiol Ecol 86:231–245. doi:10.1111/1574-6941.12156

    Article  PubMed  CAS  Google Scholar 

  57. Häusler S, Weber M, de Beer D, Ionescu D (2014) Spatial distribution of diatom and cyanobacterial mats in the Dead Sea is determined by response to rapid salinity fluctuations. Extremophiles 18:1085–1094. doi:10.1007/s00792-014-0686-1

    Article  PubMed  Google Scholar 

  58. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth-Science Rev 96:141–162. doi:10.1016/j.earscirev.2008.10.005

    Article  CAS  Google Scholar 

  59. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. doi:10.1146/annurev.mi.49.100195.003431

    Article  PubMed  CAS  Google Scholar 

  60. De Philippis R, Margheri MC, Materassi R, Vincenzini M (1998) Potential of Unicellular Cyanobacteria from Saline Environments as Exopolysaccharide Producers. Appl Envir Microbiol 64:1130–1132

    Google Scholar 

  61. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review. J Appl Phycol 13:293–299. doi:10.1023/A:1017590425924

    Article  Google Scholar 

  62. Stal LJ (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol 131:1–32. doi:10.1111/j.1469-8137.1995.tb03051.x

    Article  CAS  Google Scholar 

  63. Whitton BA, Potts M (2002) The Ecology of Cyanobacteria. doi: 10.1007/0-306-46855-7

  64. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273. doi:10.1016/S0278-4343(00)00022-4

    Article  Google Scholar 

  65. Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J (2005) Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol 51:379–384. doi:10.1007/s00284-005-0069-z

    Article  PubMed  CAS  Google Scholar 

  66. Dupraz C, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438. doi:10.1016/j.tim.2005.07.008

    Article  PubMed  CAS  Google Scholar 

  67. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411. doi:10.1111/j.1472-4669.2007.00117.x

    Article  CAS  Google Scholar 

  68. Bastviken D, Ejlertsson J, Sundh I, Tranvik L (2003) Methane as a source of carbon energy for lake pelagic food webs. Ecology 84:969–981. doi:10.1890/0012-9658(2003)084[0969:MAASOC]2.0.CO;2

    Article  Google Scholar 

  69. Sanseverino AM, Bastviken D, Sundh I, Pickova J, Enrich-Prast A (2012) Methane carbon supports aquatic food webs to the fish level. PLoS One 7, e42723. doi:10.1371/journal.pone.0042723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  70. Santoro AL, Bastviken D, Gudasz C, Tranvik L, Enrich-Prast A (2013) Dark carbon fixation: an important process in lake sediments. PLoS One 8, e65813. doi:10.1371/journal.pone.0065813

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080. doi:10.1073/pnas.0506836103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Omenn GS, Hollaender A, Chakrabarty AM, Levin M, Nester E, Orians GH, Wilson CM (1984) Genet Control Environ Pollut. doi:10.1007/978-1-4684-4715-6

    Article  Google Scholar 

  73. Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764. doi:10.1021/cr00094a002

    Article  CAS  Google Scholar 

  74. Silver S, Phung LT (2005) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605. doi:10.1007/s10295-005-0019-6

    Article  PubMed  CAS  Google Scholar 

  75. Belfiore C, Ordoñez OF, Farías ME (2013) Proteomic approach of adaptive response to arsenic stress in Exiguobacterium sp. S17, an extremophile strain isolated from a high-altitude Andean Lake stromatolite. Extremophiles 17:421–431. doi:10.1007/s00792-013-0523-y

    Article  PubMed  CAS  Google Scholar 

  76. Gorriti MF, Dias GM, Chimetto LA, Trindade-Silva AE, Silva BS, Mesquita MMA, Gregoracci GB, Farias ME, Thompson CC, Thompson FL (2014) Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BMC Genomics 15:473. doi:10.1186/1471-2164-15-473

    Article  PubMed Central  PubMed  Google Scholar 

  77. Macy JM, Santini JM, Pauling BV, O’Neill AH, Sly LI (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57. doi:10.1007/s002030050007

    Article  PubMed  CAS  Google Scholar 

  78. Chen S, Shao Z (2009) Isolation and diversity analysis of arsenite-resistant bacteria in communities enriched from deep-sea sediments of the Southwest Indian Ocean Ridge. Extremophiles 13:39–48. doi:10.1007/s00792-008-0195-1

    Article  PubMed  CAS  Google Scholar 

  79. Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137. doi:10.1016/j.resmic.2006.11.006

    Article  PubMed  CAS  Google Scholar 

  80. Dib J, Motok J, Zenoff VF, Ordoñez O, Farías ME (2008) Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands. Curr Microbiol 56:510–517. doi:10.1007/s00284-008-9103-2

    Article  PubMed  CAS  Google Scholar 

  81. Seufferheld MJ, Alvarez HM, Farias ME (2008) Role of polyphosphates in microbial adaptation to extreme environments. Appl Environ Microbiol 74:5867–5874. doi:10.1128/AEM.00501-08

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Lawrence JR, Chenier MR, Roy R, Beaumier D, Fortin N, Swerhone GDW, Neu TR, Greer CW (2004) Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. Appl Environ Microbiol 70:4326–4339. doi:10.1128/AEM.70.7.4326-4339.2004

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Nocker A, Lepo JE, Martin LL, Snyder RA (2007) Response of estuarine biofilm microbial community development to changes in dissolved oxygen and nutrient concentrations. Microb Ecol 54:532–542. doi:10.1007/s00248-007-9236-z

    Article  PubMed  Google Scholar 

  84. Park H-D, Noguera DR (2004) Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res 38:3275–3286. doi:10.1016/j.watres.2004.04.047

    Article  PubMed  CAS  Google Scholar 

  85. Wang X, Hu M, Xia Y, Wen X, Ding K (2012) Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl Environ Microbiol 78:7042–7047. doi:10.1128/AEM.01617-12

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Sociedad Química y Minera de Chile and Centro de Ecología Aplicada. Fernández, Kurth, and Rasuk are recipients of a CONICET fellowship. We also want to thank Lic Javier Maldonado of CONICET for his assistance in field trip and Lic. Cecilia Genazzini and Mr. Pablo García of CONICET for their assistance in the XRD laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Farías.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Mineral composition of the mats and sediments obtained by X-ray diffraction (XRD) analyses. (A-E) Difractograms of LL1, LL2, Cej, Cop and Puj respectively. (F) Ternary plot of major minerals in the samples. Cej and LL1 (gypsum-rich), Puj and LL2 (halite-rich), Cop (carbonates-rich) (G) Table showing mineral composition in the samples and their relative abundance (H) Comparative bar graph displaying the relative mineral abundance. (GIF 165 kb)

High resolution image (TIFF 3855 kb)

Supplementary Figure S2

Beta diversity analysis comparing the phylum-level abundance. Socompa stromatolite (Soc), Bahamas trombolite (BaT), Bahamas stromatolite (BaS), Tebenquiche mat (Teb), Brava mat (Bra), Guerrero Negro mat (Gne), Yellowstone stromatolites (YsF, YsC). (GIF 515 kb)

High resolution image (TIFF 298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasuk, M.C., Fernández, A.B., Kurth, D. et al. Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert. Microb Ecol 71, 44–56 (2016). https://doi.org/10.1007/s00248-015-0649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0649-9

Keywords

Navigation