Skip to main content
Log in

Occurrence of Resistance to Antibiotics, UV-B, and Arsenic in Bacteria Isolated from Extreme Environments in High-Altitude (Above 4400 m) Andean Wetlands

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

High-altitude Andean wetlands are pristine environments with extreme conditions such as high UV radiation, high heavy metal content (mainly arsenic), high salinity, and oligotrophy. In this paper, the UV-B resistance and tolerance to arsenic of phylogenetically characterized bacteria (Actinobacteria [six isolates], Firmicutes [four isolates], and γ-Proteobacteria [three isolates]) isolated from Laguna Vilama (4400-m altitude) and Laguna Azul (4560 m) were determined. In addition, given that multiple antibiotic resistances were also determined, a relationship between antibiotic resistances as a consequence of mutagenic ability or in relation to metal resistance is proposed. High UV-B resistances were found, since after 30 min (0.7 KJ m−2) and 60 min (1.4 KJ m−2) of irradiation, most of the studied bacteria did not show a decreased survival; what is more, many of them had an improved survival with the increased doses. Augmentations in mutagenesis rates were observed after UV-B irradiation in only 4 of the 13 tested isolates. Arsenite tolerance was also established in 8 of the 13 tested strains: Staphylococcus saprophyticus A3 and Micrococcus sp. A7, which were able to grow in media containing up to 10 mM As(III). Finally, predominance of antibiotic resistances (azithromycin, erythromycin, clarithromycin, roxithromycin, streptomycin, chloramphenicol, gentamycin, kanamycin, tetracycline, and ampicillin) was found, in all the isolated strains from both wetlands, with unexpectedly high minimal inhibitory concentrations (MICs; >2 mg mL−1) for macrolides. These results demonstrate that in extreme environments like high-altitude wetlands there is a correlation of multiresistances to UV-B radiation and arsenic, and that antibiotic resistances are also widespread in these pristine environments, where antibiotic selective pressure is supposed to be absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agogué H, Joux F, Obernosterer I, Lebaron P (2005) Resistance of marine bacterioneuston to solar radiation. Appl Environ Microbiol 71:5282–5289

    Article  PubMed  CAS  Google Scholar 

  2. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  PubMed  CAS  Google Scholar 

  3. Calormiris J, Armstrong JL, Seidler RJ (1984) Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol 47:1238–1242

    Google Scholar 

  4. Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, Barras F, Heulin T (2006) The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol 8:514–525

    Article  PubMed  CAS  Google Scholar 

  5. Demergasso C, Casamayor EO, Chong G, Galleguillos P, Escudero L, Pedros-Alio C (2004) Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Microbiol Ecol 48:57–69

    Article  CAS  PubMed  Google Scholar 

  6. Fernandez Zenoff V, Heredia J, Ferrero MA, Siñeriz F, Farías ME (2006) Isolation of UV resistant bacteria from high altitude Andean wetland bacterial community. Curr Microbiol 52:359–362

    Article  CAS  Google Scholar 

  7. Fernández Zenoff V, Siñeriz F, Farías ME (2006) Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high altitude aquatic environments (3,600–4,560 m). Appl Environ Microbiol 72:7857–7864

    Article  PubMed  CAS  Google Scholar 

  8. Filali BK, Taoufik J, Zeroual Y, Dzairi FZ, Talbi M, Blaghen M (2000) Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr Microbiol 41:151–156

    PubMed  CAS  Google Scholar 

  9. Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreen. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  10. Joux F, Jeffrey WH, Lebaron P, Mitchell DL (1999) Marine bacterial isolates display diverse responses to UV-B radiation. Appl Environ Microbiol 65:3820–3827

    PubMed  CAS  Google Scholar 

  11. Kokjohn TA, Miller RV (1994) IncN plasmids mediate UV resistance and error-prone repair in Pseudomonas aeruginosa PAO. Microbiology 140:43–48

    Article  PubMed  CAS  Google Scholar 

  12. Lazar V, Cernat R, Balotescu C, Cotar A, Coipan E, Cojocaru C (2002) Correlation between multiple antibiotic resistance and heavy-metal tolerance among some Escherichia coli strains isolated from polluted waters. Bacteriol Virusol Parazitol Epidemiol 47:155–160

    PubMed  Google Scholar 

  13. Martin EL, Reinhardt RL, Baum LL, Becker MR, Shaffer JJ, Kokjohn TA (2000) The effects of ultraviolet radiation on the moderate halophile Halomonas elongata and the extreme halophile Halobacterium salinarum. Can J Microbiol 46:180–187

    Article  PubMed  CAS  Google Scholar 

  14. Mantelli F, Scala C, Ronchi A, Gatti A, Minoia C (2003). Macrocostituenti ed elementi in traccia nelle acque dei laghi salini delle Andi de Catamarca e la Rioja (Argentina). Boll Chim Igien 54:37–34

    CAS  Google Scholar 

  15. Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of Genes Involved in Arsenic Resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215

    Article  PubMed  CAS  Google Scholar 

  16. Pathak SP, Gopal K (2005) Occurrence of antibiotic and metal resistance in bacteria from organs of river fish. Environ Res 98:100–103

    Article  PubMed  CAS  Google Scholar 

  17. Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  18. Smith BT, Walker GC (1998) Mutagenesis and more: umuDC and the Escherichia coli SOS response. Genetics 148:1599–1610

    PubMed  CAS  Google Scholar 

  19. Seveno NA, Kallifidas D, Smalla K, Van Elsas JD, Collard JM, Karagouni AD, Wellington EMH (2002) Occurrence and reservoirs of antibiotic resistance genes in the environment. Rev Med Microbiol 13:15–27

    Google Scholar 

  20. Tanooka H, Tanaka K, Shinozaki K (1991) Heterospecific expression of misrepair-enhancing activity of mucAB in Escherichia coli and Bacillus subtilis. J Bacteriol 173:2906–2914

    PubMed  CAS  Google Scholar 

  21. Tenover FC, McGowan JE Jr. (1996) Reasons for the emergence of antibiotic resistance. Am J Med Sci 311:9–16

    Article  PubMed  CAS  Google Scholar 

  22. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  23. Warnecke F, Sommaruga R, Sekar R, Hofer JS, Pernthaler J (2005) Abundances, identity, and growth state of actinobacteria in mountain lakes of different UV transparency. Appl Environ Microbiol 71:5551–5559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundación Antorchas No. 14248-133, Agencia Nacional de Promoción Científica y Tecnológica and Fundación BBVA. Verónica Fernández Zenoff, Julián Dib, and Jessica Motok are supported by CONICET fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Farías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dib, J., Motok, J., Zenoff, V.F. et al. Occurrence of Resistance to Antibiotics, UV-B, and Arsenic in Bacteria Isolated from Extreme Environments in High-Altitude (Above 4400 m) Andean Wetlands. Curr Microbiol 56, 510–517 (2008). https://doi.org/10.1007/s00284-008-9103-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9103-2

Keywords

Navigation