Skip to main content
Log in

The Santa Pola saltern as a model for studying the microbiota of hypersaline environments

  • Special Issue: Review
  • 10th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Multi-pond salterns constitute an excellent model for the study of the microbial diversity and ecology of hypersaline environments, showing a wide range of salt concentrations, from seawater to salt saturation. Accumulated studies on the Santa Pola (Alicante, Spain) multi-pond solar saltern during the last 35 years include culture-dependent and culture-independent molecular methods and metagenomics more recently. These approaches have permitted to determine in depth the microbial diversity of the ponds with intermediate salinities (from 10 % salts) up to salt saturation, with haloarchaea and bacteria as the two main dominant groups. In this review, we describe the main results obtained using the different methodologies, the most relevant contributions for understanding the ecology of these extreme environments and the future perspectives for such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523

    Article  PubMed  Google Scholar 

  • Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057

    Article  PubMed Central  PubMed  Google Scholar 

  • Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  Google Scholar 

  • Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A, Soliveri J (2009) Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 59:578–582

    Article  CAS  PubMed  Google Scholar 

  • Benlloch S, Martínez-Murcia A, Rodriguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rDNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581

    Article  Google Scholar 

  • Benlloch S, Acinas SG, Antón J, López-López A, Luz SP, Rodríguez-Valera F (2001) Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb Ecol 41:12–19

    CAS  PubMed  Google Scholar 

  • Benlloch S, López-López A, Casamayor EO, Ovreas L, Goddard V, Daee FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  • Bolhuis H, Poele EM, Rodríguez-Valera F (2004) Isolation and cultivation of Walsby’s square archaeon. Environ Microbiol 6:349–360

    Article  Google Scholar 

  • Boujelben I, Gomariz M, Martínez-García M, Santos F, Peña A, López C, Antón J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Antonie van Leeuwenhoek 101:845–857

    Article  CAS  Google Scholar 

  • Bowers KJ, Wiegel J (2011) Temperature and pH optima of extremely halophilic Archaea. a mini-review. Extremophiles 15:119–128

    Article  CAS  PubMed  Google Scholar 

  • Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extreme of high salt, alkaline pH and elevated temperature approach a physic-chemical boundary for life? Saline Systems 5:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Calderón-Paz JI, Pedrós-Alió C (2000) 5S rRNA fingerprints of marine bacteria, halophilic archaea and natural prokaryotic assemblages along a salinity gradient. FEMS Microbiol Ecol 34:113–119

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  • Claus D, Fahmy F, Rolf HJ, Tosunoglu N (1983) Sporosarcina halophila sp. nov., an obligate, slightly halophilic bacterium from salt marsh soils. Syst Appl Microbiol 4:496–506

    Article  CAS  PubMed  Google Scholar 

  • Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D’Auria G, Zhaxybayeva O, Papke RT, Rodriguez-Valera F (2007) Genomic plasticity in prokaryotes: the case of the square haloarchaeon. ISME J 1:235–245

    Article  CAS  PubMed  Google Scholar 

  • de la Haba RR, Sánchez-Porro C, Márquez MC, Ventosa V (2011) Taxonomy of halophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Heidelberg, pp 255–308

    Chapter  Google Scholar 

  • Dobson SJ, Franzmann PD (1996) Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46:550–558

    Article  CAS  Google Scholar 

  • Dulau N (1983) Les domaines sédimentaires préhalitiques des marais salants de la région de Salin-de-Giraud (France) et de Santa Pola (Espagne). Doctoral Thesis. 3ème Cycle-Université Louis Pasteur, Strasbourg

  • Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293

    Article  CAS  PubMed  Google Scholar 

  • Fernandez AB, Ghai R, Martin-Cuadrado AB, Sanchez-Porro C, Rodriguez-Valera F, Ventosa A (2013) Metagenome sequencing of prokaryotic microbiota from two hypersaline ponds of a marine saltern in Santa Pola, Spain. Genome Announc 1:e00933-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernández AB, Ghai R, Martin-Cuadrado AB, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014a) Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88:623–635

    Article  PubMed  Google Scholar 

  • Fernández AB, Vera-Gargallo B, Sánchez-Porro C, Ghai R, Papke RT, Rodriguez-Valera F, Ventosa A (2014b) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196

    Article  PubMed Central  PubMed  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105:3805–3810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia MT, Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987a) The susceptibility of the moderate halophile Vibrio costicola to heavy metals. J Appl Bacteriol 63:63–66

    Article  CAS  Google Scholar 

  • Garcia MT, Ventosa A, Ruiz-Berraquero F, Kocur M (1987b) Taxonomic study and amended description of Vibrio costicola. Int J Syst Bacteriol 37:251–256

    Article  Google Scholar 

  • Garcia-Heredia I, Martin-Cuadrado AB, Mojica FJM, Santos F, Mira A, Antón J, Rodriguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS ONE 7:e33802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Grant WD, Pagaling E, Márquez MC, Gutiérrez MC, Cowan DA, Ma Y, Jones BE, Ventosa A, Heaphy S (2011) The hypersaline lakes of Inner Mongolia: the MGAtech projet. In: Oren A, Ma Y, Ventosa A (eds) Halophiles and hypersaline environments. Springer, New York, pp 65–107

    Chapter  Google Scholar 

  • Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Article  Google Scholar 

  • Gutierrez MC, Garcia MT, Ventosa A, Ruiz-Berraquero F (1989a) Relationships among Vibrio costicola strains assessed by DNA-DNA hybridization. FEMS Microbiol Lett 61:37–40

    Article  CAS  Google Scholar 

  • Gutierrez MC, Ventosa A, Ruiz-Berrequero F (1989b) DNA-DNA homology studies among strains of Haloferax and other halobacteria. Cur Microbiol 18:253–256

    Article  Google Scholar 

  • Gutierrez MC, Ventosa A, Ruiz-Berrequero F (1990) Deoxyribonucleic acid relatedness among species of Haloarcula and other halobacteria. Biochem Cell Biol 68:106–110

    Article  CAS  Google Scholar 

  • Gutierrez MC, Kamekura M, Holmes ML, Dyall-Smith ML, Ventosa A (2002) Taxonomic characterization of Haloferax sp. (“H. alicantei”) strain Aa 2.2: description of Haloferax lucentensis sp. nov. Extremophiles 6:479–483

    Article  PubMed  Google Scholar 

  • Hao MV, Kocur M, Komagata K (1984) Marinococcus gen. nov., a new genus for motile cocci with meso-diaminopimelic acid in the cell wall; and Marinococcus albus sp. nov. and Marinococcus halophilus (Novitsky and Kushner) comb. nov. J Gen Appl Microbiol 30:449–459

    Article  Google Scholar 

  • Juez G, Rodriguez-Valera F, Ventosa A, Kushner DJ (1986) Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Syst Appl Microbiol 8:75–79

    Article  Google Scholar 

  • Kessel M, Cohen Y (1982) Ultrastructure of square bacteria from a brine pool in Southern Sinai. J Bacteriol 150:851–860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, Rooney AP, Brambilla E, Connor N, Ratcliff RM, Nevo E, Cohan FM (2008) Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci USA 105:2504–2509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Landry JC, Jaccard J (1984) Chimie des eaux libres dans le marais salant de Santa-Pola, salina de Bras del Port. Rev Geol 38(39):37–53

    Google Scholar 

  • Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguez-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genom 7:171

    Article  Google Scholar 

  • León MJ, Fernández AB, Ghai R, Sánchez-Porro C, Rodriguez-Valera F, Ventosa A (2014) From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen. nov., sp. nov. Appl Environ Microbiol 80:3850–3857

    Article  PubMed  Google Scholar 

  • López-Pérez M, Ghai R, Leon MJ, Rodríguez-Olmos A, Copa-Patiño JL, Soliveri J, Sanchez-Porro C, Ventosa A, Rodriguez-Valera F (2013) Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium. BMC Genom 14:787

    Article  Google Scholar 

  • Márquez MC, Ventosa A, Ruiz-Berraquero F (1990) Marinococcus hispanicus, a new species of moderately halophilic Gram-positive cocci. Int J Syst Bacteriol 40:165–169

    Article  Google Scholar 

  • Márquez MC, Ventosa A, Ruiz-Berraquero F (1992) Phenotypic and chemotaxonomic characterization of Marinococcus halophilus. Syst Appl Microbiol 15:63–69

    Article  Google Scholar 

  • Mellado E, Moore ER, Nieto JJ, Ventosa A (1996) Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46:817–821

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78:4074–4082

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meseguer I, Rodriguez-Valera F, Ventosa A (1986) Antagonistic interactions among halobacteria due to halocin production. FEMS Microbiol Let 36:177–182

    Article  CAS  Google Scholar 

  • Moldoveanu N, Kates M, Montero CG, Ventosa A (1990) Polar lipids of non-alkaliphilic Halococci. Biochim Biophys Acta 1046:127–135

    Article  CAS  PubMed  Google Scholar 

  • Monteoliva-Sanchez M, Ventosa A, Ramos-Cormenzana A (1989) Cellular fatty acid composition of moderately halophilic cocci. Syst Appl Microbiol 12:141–144

    Article  CAS  Google Scholar 

  • Montero CG, Ventosa A, Ruiz-Berraquero F, Rodriguez-Valera F (1988) Taxonomic study of non-alkaliphilic halococci. J Gen Microbiol 134:725–732

    Google Scholar 

  • Nieto JJ, Ventosa A, Ruiz-Berraquero F (1987) Susceptibility of halobacteria to heavy metals. Appl Environ Microbiol 53:1199–1202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto JJ, Fernández-Castillo R, Márquez MC, Ventosa A, Quesada E, Ruiz-Berraquero F (1989a) Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol 55:2385–2390

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto JJ, Ventosa A, Montero CG, Ruiz-Berraquero F (1989b) Toxicity of heavy metals to archaebacterial halococci. Syst Appl Microbiol 11:116–120

    Article  CAS  Google Scholar 

  • Nieto JJ, Fernandez-Castillo R, Garcia MT, Mellado E, Ventosa A (1993) Survey of antimicrobial susceptibility of moderately halophilic and extremely halophilic aerobic Archaeobacteria; utilization of antimicrobial resistance as a genetic marker. Syst Appl Microbiol 16:352–360

    Article  CAS  Google Scholar 

  • Oren A (1990) Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiol Ecol 73:41–48

    Article  CAS  Google Scholar 

  • Oren A (2011) Ecology of halophiles. In: Horikoshi K, Antranikian G, Bull A, Robb F, Stetter K (eds) Extremophiles handbook. Springer, Heidelberg, pp 344–361

    Google Scholar 

  • Oren A, Rodríguez-Valera F (2001) The contribution of halophilic bacteria to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130

    CAS  PubMed  Google Scholar 

  • Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Papke RT, Douady CJ, Doolittle WF, Rodríguez-Valera F (2003) Diversity of bacteriorhodopsins in different hypersaline waters from a single Spanish saltern. Environ Microbiol 5:1039–1145

    Article  CAS  PubMed  Google Scholar 

  • Papke RT, Koenig JE, Rodríguez-Valera F, Doolittle WF (2004) Frequent recombination in a saltern population of Halorubrum. Science 306:1928–1929

    CAS  PubMed  Google Scholar 

  • Pašić L, Rodriguez-Mueller B, Martin-Cuadrado AB, Mira A, Rohwer F, Rodriguez-Valera F (2009) Metagenomic islands of hyperhalophiles: the case of Salinibacter ruber. BMC Genom 10:570

    Article  Google Scholar 

  • Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marrasé C, Gasol JM, Guixa-Boixereu N (2000) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155

    Article  PubMed  Google Scholar 

  • Podell S, Emerson JB, Jones CM, Ugalde JA, Welch S, Heidelberg KB, Banfield JF, Allen EE (2013) Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community. ISME J 8:e61692

    CAS  Google Scholar 

  • Quesada E, Valderrama MJ, Bejar V, Ventosa A, Ruiz-Berraquero F, Ramos-Cormenzana A (1987) Numerical taxonomy of moderately halophilic Gram-negative nonmotile eubacteria. Syst Appl Microbiol 9:132–137

    Article  Google Scholar 

  • Rodriguez-Valera F (1988) Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F (ed) Halophilic bacteria. CRC Press, Boca Raton, pp 3–30

    Google Scholar 

  • Rodriguez-Valera F, Juez G, Kushner DJ (1982) Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Can J Microbiol 28:151–154

    Article  CAS  Google Scholar 

  • Rodriguez-Valera F, Juez G, Kushner DJ (1983) Halobacterium mediterranei spec, nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4:369–381

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pašić L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7:235–243

    Article  PubMed  Google Scholar 

  • Rodríguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multipond saltern. Microb Ecol 11:107–115

    Article  PubMed  Google Scholar 

  • Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage. Environ Microbiol 9:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Yarza P, Parro V, Briones C, Antón J (2010) The metavirome of a hypersaline environment. Environ Microbiol 12:2965–2976

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spring S, Ludwig W, Marquez MC, Ventosa A, Schleifer KH (1996) Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46:492–496

    Article  Google Scholar 

  • Stoeckenius W (1981) Walsby’s square bacterium: fine structure of an orthogonal procaryote. J Bacteriol 148:352–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang S-L, Nuttal S, Ngui K, Fisher C, Lopez P, Dyall-Smith M (2002) HF2: a double-stranded DNA tailed haloarchaeal virus with a mosaic genome. Mol Microbiol 44:283–296

    Article  CAS  PubMed  Google Scholar 

  • Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99

    Article  Google Scholar 

  • Valderrama MJ, Quesada E, Bejar V, Ventosa A, Gutiérrez MC, Ruiz-Berraquero F, Ramos-Cormenzana A (1991) Deleya salina sp. nov., a moderately halophilic Gram-negative bacterium. Int J Syst Bacteriol 41:377–384

    Article  Google Scholar 

  • Ventosa A (1993) Molecular taxonomy of Gram-positive moderately halophilic cocci. Experientia 49:1055–1058

    Article  CAS  Google Scholar 

  • Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253

    Chapter  Google Scholar 

  • Ventosa A, Quesada E, Rodríguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968

    Google Scholar 

  • Ventosa A, Ramos-Cormenzana A, Kocur M (1983) Moderately halophilic gram-positive cocci from hypersaline environments. Syst Appl Microbiol 4:564–570

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Gutiérrez MC, García MT, Ruiz-Berraquero F (1989) Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39:382–386

    Article  Google Scholar 

  • Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M (1990) Salinicoccus roseus gen. nov., sp. nov., a new moderately halophilic Gram-positive coccus. Syst Appl Microbiol 13:29–33

    Article  Google Scholar 

  • Ventosa A, Marquez MC, Weiss N, Tindall BJ (1992) Transfer of Marinococcus hispanicus to the genus Salinicoccus as Salinicoccus hispanicus comb. nov. Syst Appl Microbiol 15:530–534

    Article  Google Scholar 

  • Walsby AE (1980) A square bacterium. Nature 283:69–71

    Article  Google Scholar 

  • Wilhelm LJ, Tripp HJ, Givan SA, Smith DP, Giovannoni SJ (2007) Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol Direct 2:27

    Article  PubMed Central  PubMed  Google Scholar 

  • Yoon JH, Kang SJ, Oh TK (2007) Reclassification of Marinococcus albus Hao et al. 1985 as Salimicrobium album gen. nov., comb. nov. and Bacillus halophilus Ventosa et al. 1990 as Salimicrobium halophilum comb. nov., and description of Salimicrobium luteum sp. nov. Int J Syst Evol Microbiol 57:2406–2411

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Stepanauskas R, Mohan NR, Papke RT (2013) Cell sorting analysis of geographically separated hypersaline environments. Extremophiles 17:265–275

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The research of the authors was supported by grants from the Spanish Ministry of Science and Innovation (CGL2013-46941-P, CGL2010-19303, CGL2009-12651-C02-01 and BIO2011-12879-E), MAGYK (BIO2008-02444), MICROGEN (Programa CONSOLIDER-INGENIO 2010 CDS2009-00006), National Science Foundation (Grant DEB-0919290), MaCuMBA Project 311975 of the European Commission FP7, the Generalitat Valenciana (DIMEGEN PROMETEO/2010/089 and ACOMP/2009/155) and the Junta de Andalucía (P10-CVI-6226). FEDER funds and the Plan Andaluz de Investigación also supported this research. We thank Juan Luis Ribas and Asunción Fernández, from the Microscopy Service of CITIUS (General Research Services, University of Sevilla, Spain) for technical assistance. Maria Jose León and Ana Beatriz Fernández were recipients of postgraduate and postdoctoral fellowships, respectively, from the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Ventosa.

Additional information

Communicated by A. Oren.

This article is part of a special issue based on the 10th International Congress on Extremophiles held in Saint Petersburg, Russia, September 7–11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ventosa, A., Fernández, A.B., León, M.J. et al. The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18, 811–824 (2014). https://doi.org/10.1007/s00792-014-0681-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-014-0681-6

Keywords

Navigation