Skip to main content
Log in

Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Powdery mildew is one of the most important wheat diseases in temperate regions of the world. Resistance breeding is considered to be an economical and environmentally benign way to control this disease. The German spring wheat cv. ‘Naxos’ exhibits high levels of partial and race non-specific resistance to powdery mildew in the field and is a valuable source in resistance breeding. The main objective of the present study was to map the genetic factors behind the resistance in Naxos, based on a population of recombinant inbred lines (RIL) from a cross with the susceptible CIMMYT breeding line SHA3/CBRD. Powdery mildew severity was evaluated in six field trials in Norway and four field trials in China. The major quantitative trait locus (QTL) with resistance from Naxos was detected close to the Pm3 locus on 1AS in all environments, and explained up to 35% of the phenotypic variation. Naxos was shown to carry another major QTL on 2DL and minor ones on 2BL and 7DS. QTL with resistance from SHA3/CBRD were detected on 1RS, 2DLc, 6BL and 7AL. The QTL on the 1B/1R translocation showed highly variable effects across environments corresponding to known virulence differences against Pm8. SHA3/CBRD was shown to possess the Pm3 haplotype on 1AS, but none of the known Pm3a-g alleles. The RIL population did not provide any evidence to suggest that the Pm3 allele of SHA3/CBRD acted as a suppressor of Pm8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bjarko ME, Line RF (1988) Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology 78(4):457–461

    Article  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 117(1):135–142

    Article  PubMed  CAS  Google Scholar 

  • Börner Schumann, Fürste Cöster, Leithold Röder, Weber (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105(6):921–936. doi:10.1007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Bossolini E, Krattinger S, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113(6):1049–1062. doi:10.1007/s00122-006-0364-5

    Article  PubMed  CAS  Google Scholar 

  • Bougot Y, Lemoine J, Pavoine MT, Guyomar’ch H, Gautier V, Muranty H, Barloy D (2006) A major QTL effect controlling resistance to powdery mildew in winter wheat at the adult plant stage. Plant Breeding 125(6):550–556

    Article  CAS  Google Scholar 

  • Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M, Doussinault G (2000) Location and mapping of the powdery mildew resistance gene MIRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet 100(8):1217–1224

    Article  CAS  Google Scholar 

  • Chantret N, Mingeot D, Sourdille P, Bernard M, Jacquemin JM, Doussinault G (2001) A major QTL for powdery mildew resistance is stable over time and at two development stages in winter wheat. Theor Appl Genet 103(6–7):962–971

    Article  CAS  Google Scholar 

  • Conner RL, Kuzyk AD, Su H (2003) Impact of powdery mildew on the yield of soft white spring wheat cultivars. Can J Plant Sci 83(4):725–728

    Article  Google Scholar 

  • Duan XY, Sheng BQ (1998) Identification of isolates of Blumeria graminis f. sp. tritici and the monitoring of their virulence frequencies. Acta Phytopathol Sinica 25:31–36

    Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela HA, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323(5919):1357–1360. doi:10.1126/science.1166289

    Article  PubMed  CAS  Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77(6):618–622

    Article  Google Scholar 

  • Hanusova R, Hsam SLK, Bartos P, Zeller FJ (1996) Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye translocation T1BL.1RS. Heredity 77:383–387

    Article  Google Scholar 

  • He ZH, Rajaram S, Xin ZY, Huang GZ (2001) A history of wheat breeding in China. CIMMYT, Mexico

    Google Scholar 

  • He RL, Chang ZJ, Yang ZJ, Yuan ZY, Zhan HX, Zhang XJ, Liu JX (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118(6):1173–1180

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Foessel S, Lagudah E, Huerta-Espino J, Hayden M, Bariana H, Singh D, Singh R (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122(1):239–249. doi:10.1007/s00122-010-1439-x

    Article  PubMed  Google Scholar 

  • Hua W, Liu ZJ, Zhu J, Xie CJ, Yang TM, Zhou YL, Duan XY, Sun QX, Liu ZY (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119(2):223–230

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137(2):203–223

    Article  CAS  Google Scholar 

  • Hysing SC, Merker A, Liljeroth E, Koebner RMD, Zeller FJ, Hsam SLK (2007) Powdery mildew resistance in 155 Nordic bread wheat cultivars and landraces. Hereditas 144(3):102–119

    Article  PubMed  Google Scholar 

  • Keller M, Keller B, Schachermayr G, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Quantitative trait loci for resistance against powdery mildew in a segregating wheat × spelt population. Theor Appl Genet 98(6–7):903–912

    Article  CAS  Google Scholar 

  • Koebner RMD (1995) Generation of PCR-based markers for the detection of rye chromatin in a wheat background. Theor Appl Genet 90(5):740–745

    Article  Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119(5):889–898. doi:10.1007/s00122-009-1097-z

    Article  PubMed  CAS  Google Scholar 

  • Lan CX, Liang SS, Wang ZL, Yan J, Zhang Y, Xia XC, He ZH (2009) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in Chinese wheat cultivar Bainong 64. Phytopathology 99(10):1121–1126. doi:10.1094/phyto-99-10-1121

    Article  PubMed  Google Scholar 

  • Lan CX, Ni XW, Yan J, Zhang Y, Xia XC, Chen XM, He ZH (2010) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breeding 25(4):615–622

    Article  CAS  Google Scholar 

  • Liang SS, Suenaga K, He ZH, Wang ZL, Liu HY, Wang DS, Singh RP, Sourdille P, Xia XC (2006) Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology 96(7):784–789

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116(8):1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Lillemo M, Singh RP, van Ginkel M (2010a) Identification of stable resistance to powdery mildew in wheat based on parametric and nonparametric methods. Crop Sci 50(2):478–485

    Article  Google Scholar 

  • Lillemo M, Skinnes H, Brown JKM (2010b) Race specific resistance to powdery mildew in Scandinavian wheat cultivars, breeding lines and introduced genotypes with partial resistance. Plant Breeding 129(3):297–303

    Article  CAS  Google Scholar 

  • Lillemo M, Bjørnstad Å, Skinnes H (2012) Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica doi:10.1007/s10681-011-0620-x (online)

  • Liu SX, Griffey CA, Maroof MAS (2001) Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Sci 41(4):1268–1275

    Article  CAS  Google Scholar 

  • Ma H, Kong Z, Fu B, Li N, Zhang L, Jia H, Ma Z (2011) Identification and mapping of a new powdery mildew resistance gene on chromosome 6D of common wheat. Theor Appl Genet 123(7):1099–1106

    Google Scholar 

  • McDonald BA, Linde C (2002) The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica 124(2):163–180

    Article  CAS  Google Scholar 

  • McIntosh R, Zhang P, Cowger C, Parks R, Lagudah E, Hoxha S (2011) Rye-derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theor Appl Genet 123(3):359–367

    Google Scholar 

  • Mingeot D, Chantret N, Baret PV, Dekeyser A, Boukhatem N, Sourdille P, Doussinault G, Jacquemin JM (2002) Mapping QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 in two susceptible genetic backgrounds. Plant Breeding 121(2):133–140

    Article  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Leath S (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113(8):1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114(8):1451–1456

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Bauer A, Bauer C, Flath K, Schweizer G, Hartl L (2011) Genetic analysis of powdery mildew resistance in German winter wheat cultivar Cortez. Plant Breeding 130(1):35–40. doi:10.1111/j.1439-0523.2010.01824.x

    Article  CAS  Google Scholar 

  • Muranty H, Pavoine MT, Jaudeau B, Radek W, Doussinault G, Barloy D (2009) Two stable QTL involved in adult plant resistance to powdery mildew in the winter wheat line RE714 are expressed at different times along the growing season. Mol Breeding 23(3):445–461

    Article  CAS  Google Scholar 

  • Ren SX, McIntosh RA, Lu ZJ (1997) Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica 93(3):353–360

    Article  Google Scholar 

  • Rosewarne G, Singh R, Huerta-Espino J, William H, Bouchet S, Cloutier S, McFadden H, Lagudah E (2006) Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112(3):500–508. doi:10.1007/s00122-005-0153-6

    Article  PubMed  CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42(5):964–972

    PubMed  CAS  Google Scholar 

  • Schneider A, Molnár-Láng M (2009) Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL.1RS or 1AL.1RS translocations using SSR and STS markers. Acta Agron Hung 57(4):409–416

    Article  CAS  Google Scholar 

  • Singh RP (1992) Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci 32(4):874–878

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88(9):890–894

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40(4):1148–1155. doi:10.2135/cropsci2000.4041148x

    Article  CAS  Google Scholar 

  • Skinnes H (2002) Breakdown of race specific resistance to powdery mildew in Norwegian wheat. Cereal Rusts and Powdery Mildews Bulletin 30. Available at http://www.crpmb.org/2002/1201skinnes/

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109(6):1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111(4):731–735

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114(1):165–175. doi:10.1007/s00122-006-0420-1

    Article  PubMed  CAS  Google Scholar 

  • Tucker DM, Griffey CA, Liu S, Brown-Guedira G, Marshall DS, Maroof MAS (2007) Confirmation of three quantitative trait loci conferring adult plant resistance to powdery mildew in two winter wheat populations. Euphytica 155(1–2):1–13

    Article  Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112(1):97–105. doi:10.1007/s00122-005-0109-x

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a computer program to map QTL. Institute of plant breeding, seed science and population genetics, University of Hohenheim, Stuttgart

  • Van Ooijen J, Voorrips R (2001) Joinmap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang ZL, Li LH, He ZH, Duan XY, Zhou YL, Chen XM, Lillemo M, Singh RP, Wang H, Xia XC (2005) Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis 89(5):457–463

    Article  CAS  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93(2):153–159

    Article  PubMed  CAS  Google Scholar 

  • Xu WG, Li CX, Hu L, Zhang L, Zhang JZ, Dong HB, Wang GS (2010) Molecular mapping of powdery mildew resistance gene PmHNK in winter wheat (Triticum aestivum L.) cultivar Zhoumai 22. Mol Breeding 26(1):31–38

    Article  CAS  Google Scholar 

  • Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47(1):85–98

    Article  PubMed  CAS  Google Scholar 

  • Yu DZ (2000) Wheat powdery mildew in Central China: pathogen population structure and host resistance. PhD thesis, Wageningen University and Research Centre, Wageningen

  • Zhou Y, He ZH, Zhang GS, Xia LQ, M. CX, C. GY, B. JZ, J. YG (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agronomica Sinica 30(6):531–535

    CAS  Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48(4):585–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The PhD scholarship of the first author was funded by the Norwegian University of Life Sciences, and the research was supported by grants from the Research Council of Norway (projects 178273 and 185046), and the National Science Foundation of China (projects 30821140351 and 30671294). Additionally, we gratefully acknowledge the technical contributions from Anne Guri Marøy in the lab and Yalew Tarkegne in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Lillemo.

Additional information

Communicated by J. Snape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Q., Bjørnstad, Å., Ren, Y. et al. Partial resistance to powdery mildew in German spring wheat ‘Naxos’ is based on multiple genes with stable effects in diverse environments. Theor Appl Genet 125, 297–309 (2012). https://doi.org/10.1007/s00122-012-1834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1834-6

Keywords

Navigation