Skip to main content
Log in

Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Diversity arrays technology (DArT) genomic libraries were developed from H. chilense accessions to support robust genotyping of this species and a novel crop comprising H. chilense genome (e.g., tritordeums). Over 11,000 DArT clones were obtained using two complexity reduction methods. A subset of 2,209 DArT markers was identified on the arrays containing these clones as polymorphic between parents and segregating in a population of 92 recombinant inbred lines (RIL) developed from the cross between H. chilense accessions H1 and H7. Using the segregation data a high-density map of 1,503 cM was constructed with average inter-bin density of 2.33 cM. A subset of DArT markers was also mapped physically using a set of wheat–H. chilense chromosome addition lines. It allowed the unambiguous assignment of linkage groups to chromosomes. Four segregation distortion regions (SDRs) were found on the chromosomes 2Hch, 3Hch and 5Hch in agreement with previous findings in barley. The new map improves the genome coverage of previous H. chilense maps. H. chilense-derived DArT markers will enable further genetic studies in ongoing projects on hybrid wheat, seed carotenoid content improvement or tritordeum breeding program. Besides, the genetic map reported here will be very useful as the basis to develop comparative genomics studies with barley and model species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92

    Article  Google Scholar 

  • Alvarez JB, Martin A, Martin LM (1999a) Allelic variation of the d-prolamin subunits encoded at the Hch genome in a collection of primary hexaploid tritordeums. Theor Appl Genet 99:296–299

    Article  Google Scholar 

  • Alvarez JB, Martin LM, Martin A (1999b) Genetic variation for carotenoid pigment content in the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Plant Breed 118:187–189

    Article  CAS  Google Scholar 

  • Alvarez JB, Caballero L, Nadal S, Ramírez MC, Martín A (2009) Development and gluten strength evaluation of introgression lines of Triticum urartu in durum wheat. Cereal Res Commun 37:243–248

    Article  CAS  Google Scholar 

  • Atienza SG, Gimenez MJ, Martin A, Martin LM (2000) Variability in monomeric prolamins in Hordeum chilense. Theor Appl Genet 101:970–976

    Article  CAS  Google Scholar 

  • Atienza SG, Ramirez CM, Hernandez P, Martin A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304

    Article  CAS  Google Scholar 

  • Atienza SG, Satovic Z, Martin A, Martin LM (2005) Genetic diversity in Hordeum chilense Roem. et Schult. germplasm collection as determined by endosperm storage proteins. Genet Res Crop Evol 52:127–135

    Article  CAS  Google Scholar 

  • Atienza SG, Avila CM, Martin A (2007a) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58:767–773

    Article  CAS  Google Scholar 

  • Atienza SG, Ballesteros J, Martin A, Hornero-Mendez D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (×Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Martin AC, Martin A (2007c) Introgression of wheat chromosome 2D or 5D into tritordeum leads to free-threshing habit. Genome 50:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Martin AC, Ramirez MC, Martin A, Ballesteros J (2007d) Effects of Hordeum chilense cytoplasm on agronomic traits in common wheat. Plant Breed 126:5–8

    Article  CAS  Google Scholar 

  • Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson CT, Caig V, Huttner E, Kilian A, Laroche A (2011) Development and assessment of DArT markers in triticale. Theor Appl Genet 122:1547–1560

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros J, Ramirez MC, Martinez C, Atienza SG, Martin A (2005) Registration of HT621, a high carotenoid content tritordeum germplasm line. Crop Sci 45:2662–2663

    Article  Google Scholar 

  • Bartoš J, Sandve S, Kölliker R, Kopecký D, Christelová P, Stočes Š, Østrem L, Larsen A, Kilian A, Rognli O-A, Doležel J (2011) Genetic mapping of DArT markers in the Festuca/Lolium complex and their use in freezing tolerance association analysis. Theor Appl Genet 122:1133–1147

    Article  PubMed  Google Scholar 

  • Bolibok-Bragoszewska H, Heller-Uszynska K, Wenzl P, Uszynski G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome—genetic diversity and mapping. BMC Genomics 10:578

    Article  PubMed  Google Scholar 

  • Castillo A, Budak H, Varshney R, Dorado G, Graner A, Hernandez P (2008) Transferability and polymorphism of barley EST-SSR markers used for phylogenetic analysis in Hordeum chilense. BMC Plant Biol 8:97

    Article  PubMed  Google Scholar 

  • Castillo A, Budak H, Martin AC, Dorado G, Borner A, Roder M, Hernandez P (2010a) Interspecies and intergenus transferability of barley and wheat D-genome microsatellite markers. Ann Appl Biol 156:347–356

    Article  CAS  Google Scholar 

  • Castillo A, Dorado G, Feuillet C, Sourdille P, Hernandez P (2010b) Genetic structure and ecogeographical adaptation in wild barley (Hordeum chilense Roemer et Schultes) as revealed by microsatellite markers. BMC Plant Biol 10:266

    Article  PubMed  CAS  Google Scholar 

  • Cherif-Mouaki S, Said M, Alvarez JB, Cabrera A (2011) Sub-arm location of prolamin and EST-SSR loci on chromosome 1Hch from Hordeum chilense. Euphytica 178:63–69

    Article  CAS  Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szucs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Francki M, Walker E, Crawford A, Broughton S, Ohm H, Barclay I, Wilson R, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  PubMed  CAS  Google Scholar 

  • Gil-Humanes J, Piston F, Martin A, Barro F (2009) Comparative genomic analysis and expression of the APETALA2-like genes from barley, wheat, and barley–wheat amphiploids. BMC Plant Biol 9:66

    Article  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Hagras AAA, Kishii M, Sato K, Tanaka H, Tsujimoto H (2005a) Extended application of barley EST markers for the analysis of alien chromosomes added to wheat genetic background. Breed Sci 55:335–341

    Article  CAS  Google Scholar 

  • Hagras AAA, Kishii M, Tanaka H, Sato K, Tsujimoto H (2005b) Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 80:147–159

    Article  PubMed  Google Scholar 

  • Harushima Y, Nakagahra M, Yano M, Sasaki T, Kurata N (2001) A genome-wide survey of reproductive barriers in an intraspecific hybrid. Genetics 159:883–892

    PubMed  CAS  Google Scholar 

  • Hernández P, Dorado G, Prieto Giménez MJ, Ramírez MC, Laurie DA, Snape JW, Martin A (2001) A core map of Hordeum chilense and comparisons with maps of barley (Hordeum vulgare) and wheat (Triticum aestivum). Theor Appl Genet 102:1259–1264

    Article  Google Scholar 

  • Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23:365–376

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acid Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Gill B, Faris J (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278:187–196

    Article  PubMed  CAS  Google Scholar 

  • Li HB, Kilian A, Zhou MX, Wenzl P, Huttner E, Mendham N, McIntyre L, Vaillancourt RE (2010) Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 284:319–331

    Article  PubMed  CAS  Google Scholar 

  • Mace E, Xia L, Jordan D, Halloran K, Parh D, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti M, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Huttner E, DeAmbrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Marcel T, Varshney R, Barbieri M, Jafary H, de Kock M, Graner A, Niks R (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Martínez C, Rubiales D, Ballesteros J (1996) Tritordeum: triticale’s new brother cereal. In: Güedes-Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer, Dordrecht, pp 57–72

    Chapter  Google Scholar 

  • Martin A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales P, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science Publications, Enfield, pp 377–386

    Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2008) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6H(ch)S chromosome addition. Aust J Agric Res 59:206–213

    Article  CAS  Google Scholar 

  • Martin AC, Atienza SG, Ramirez MC, Barro F, Martin A (2009) Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breed 24:397–408

    Article  CAS  Google Scholar 

  • Martín AC, Atienza SG, Ramírez M, Barro F, Martin A (2010) Molecular and cytological characterization of an extra acrocentric chromosome that restores male fertility of wheat in the msH1 CMS system. Theor Appl Genet 121:1093–1101

    Article  PubMed  Google Scholar 

  • Matus I, Corey A, Filichkin T, Hayes PM, Vales MI, Kling J, Riera-Lizarazu O, Sato K, Powell W, Waugh R (2003) Development and characterization of recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Genome 46:1010–1023

    Article  PubMed  CAS  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Rafiqul Islam AKM, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366

    Article  PubMed  CAS  Google Scholar 

  • Oliver R, Jellen E, Ladizinsky G, Korol A, Kilian A, Beard J, Dumlupinar Z, Wisniewski-Morehead N, Svedin E, Coon M, Redman R, Maughan P, Obert D, Jackson E (2011) New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor Appl Genet. doi:10.1007/s00122-011-1656-y (in press)

  • Piston F, Dorado G, Martin A, Barro F (2004) Cloning and characterization of a gamma-3 hordein mRNA (cDNA) from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 108:1359–1365

    Article  PubMed  CAS  Google Scholar 

  • Piston F, Martin A, Dorado G, Barro F (2005) Cloning and molecular characterization of B-hordeins from Hordeum chilense (Roem. et Schult.). Theor Appl Genet 111:551–560

    Article  PubMed  CAS  Google Scholar 

  • Piston F, Dorado G, Martin A, Barro F (2006) Cloning of nine γ-gliadin mRNAs (cDNAs) from wheat and the molecular characterization of comparative transcript levels of γ-gliadin subclasses. J Cereal Sci 43:120–128

    Article  CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Atienza SG (2010) Progress and perspectives for carotenoid accumulation in selected Triticeae species. Crop Pasture Sci 61:743–751

    Article  Google Scholar 

  • Rodríguez-Suárez C, Atienza SG, Pistón F (2011a) Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult. PLoS ONE 6:e19885

    Article  PubMed  Google Scholar 

  • Rodríguez-Suárez C, Giménez MJ, Ramírez MC, Martín AC, Gutierrez N, Ávila CM, Martín A, Atienza SG (2011b) Exploitation of nuclear and cytoplasm variability in Hordeum chilense for wheat breeding. Plant Genet Res Charact Util 9:313–316. doi:10.1017/S1479262111000402

    Google Scholar 

  • Rodríguez-Suárez C, Ramírez MC, Martín A, Atienza SG (2011c) Applicability of chromosome-specific SSR wheat markers for the introgression of Triticum urartu in durum wheat breeding programmes. Plant Genet Res Charact Util 9:439–444. doi:10.1017/S147926211100061X

    Google Scholar 

  • Said M, Cabrera A (2009) A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica 169:253–259

    Article  Google Scholar 

  • Sato K, Nankaku N, Takeda K (2009) A high-density transcript linkage map of barley derived from a single population. Heredity 103:110–117

    Article  PubMed  CAS  Google Scholar 

  • Stein N, Prasad M, Scholz U, Thiel T, Zhang H, Wolf M, Kota R, Varshney R, Perovic D, Grosse I, Graner A (2007) A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor Appl Genet 114:823–839

    Article  PubMed  CAS  Google Scholar 

  • Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash C, Kilian A, Yadav R, Narasu M (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123:239–250

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Yound ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tinker N, Kilian A, Wight C, Heller-Uszynska K, Wenzl P, Rines H, Bjornstad A, Howarth C, Jannink J-L, Anderson J, Rossnagel B, Stuthman D, Sorrells M, Jackson E, Tuvesson S, Kolb F, Olsson O, Federizzi L, Carson M, Ohm H, Molnar S, Scoles G, Eckstein P, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  Google Scholar 

  • Van Ginkel M, Ogbonnaya F (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 104:86–94

    Article  Google Scholar 

  • Van Ooijen J (2006) Joinmap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Os H, Stam P, Visser R, Van Eck H (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • Varshney R, Marcel T, Ramsay L, Russell J, Röder M, Stein N, Waugh R, Langridge P, Niks R, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Vaz Patto MC, Aardse A, Buntjer J, Rubiales D, Martin A, Niks RE (2001) Morphology and AFLP markers suggest three Hordeum chilense ecotypes that differ in avoidance to rust fungi. Can J Bot 79:204–213

    Google Scholar 

  • Vaz Patto MC, Rubiales D, Martín A, Hernández P, Lindhout P, Niks RE, Stam P (2003) QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theor Appl Genet 106:1283–1292

    PubMed  CAS  Google Scholar 

  • Von Bothmer R, Giles BE, Jacobsen N (1986) Crosses and genome relationship in the Hordeum patagonicum group. Genetica 71:75–80

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Warburton M, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. PNAS 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J, Raman R, Smith K, Muehlbauer G, Chalmers K, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • Xian-Liang S, Xue-Zhen S, Tian-Zhen Z (2006) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotech 3:163–169

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants (to S.G. Atienza) AGL2008-03720, 200840I137 and P09-AGR-4817 from the Spanish Ministry of Science and Innovation (MSI), CSIC, Junta de Andalucía and FEDER. We are grateful to E. León for her technical assistance. C. Rodríguez-Suárez acknowledges financial support from CSIC (JAE-Doc program). The authors thank Prof. Tsujimoto (Tottori University, Japan), for providing barley EST primers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Atienza.

Additional information

Communicated by M. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File 1. Set of COS and EST markers used in this work. (XLS 61 kb)

122_2011_1741_MOESM2_ESM.xls

Supplementary File 2. Physical mapping of 287 DArT markers using H. chilense (H1)-wheat (Chinese Spring) chromosome and telosomic addition lines. (XLS 146 kb)

122_2011_1741_MOESM3_ESM.xls

Supplementary File 3. Features of loci of the linkage map. Excel spreadsheet containing a list of all mapped loci and their features. Data include locus position (in both Kosambi and Haldane), physical mapping when available and segregation in the RIL population. (XLS 2946 kb)

122_2011_1741_MOESM4_ESM.pdf

Supplementary Fig. 1. Genetic linkage map of the cross H1 × H7 containing 2,032 loci. Loci with physical mapping are indicated with a chromosome-code. The estimated centromere position is indicated as a green segment. For chromosomes 6Hch and 7Hch, where the centromere was positioned in a single map position, markers mapping to the centromere are shown in red color. (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Suárez, C., Giménez, M.J., Gutiérrez, N. et al. Development of wild barley (Hordeum chilense)-derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124, 713–722 (2012). https://doi.org/10.1007/s00122-011-1741-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1741-2

Keywords

Navigation