Skip to main content
Log in

Chromosome engineering in wheat to restore male fertility in the msH1 CMS system

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Pollen fertility restoration of the CMS phenotype caused by H. chilense cytoplasm in wheat was associated with the addition of chromosome 6HchS from H. chilense accession H1. In order to develop an euploid restored line, different genomic combinations substituting the 6HchS arm for another homoeologous chromosome in wheat were evaluated, with the conclusion that the optimal combination was the translocation T6HchS·6DL. The double translocation T6HchS·6DL in H. chilense cytoplasm was obtained. This line is fertile and stable under different environmental conditions. However, a single dose of the T6HchS·6DL translocation is insufficient for fertility restoration when chromosome 6D is also present. Restoration in the msH1 system is promoted by interaction between two or more genes, and in addition to the restorer of fertility (Rf) located on chromosome 6HchS, one or more inhibitor of fertility (Fi) genes may be present in chromosome 6DL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atienza SG, Ramírez MC, Hernández P, Martín A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304. doi:10.1111/j.1439-0523.2004.00918.x

    Article  CAS  Google Scholar 

  • Atienza SG, Avila CM, Martín A (2007a) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58(8):767–773. doi:10.1071/AR06338

    Article  CAS  Google Scholar 

  • Atienza SG, Ballesteros J, Martín A, Hornero-Mández D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251. doi:10.1021/jf070342p

    Article  PubMed  CAS  Google Scholar 

  • Atienza SG, Martín AC, Ramírez MC, Martín A, Ballesteros J (2007c) Effects of Hordeum chilense cytoplasm on agronomic traits in common wheat. Plant Breed 126:5–8. doi:10.1111/j.1439-0523.2007.01319.x

    Article  CAS  Google Scholar 

  • Börner A, Korzum V, Polley A, Malyshew S, Melz G (1998) Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theor Appl Genet 97:99–102. doi:10.1007/s001220050871

    Article  Google Scholar 

  • Bothmer RV, Jacobsen N (1986) Interspecific crosses in Hordeum (Poaceae). Plant Syst Evol 153:49–64. doi:10.1007/BF00989417

    Article  Google Scholar 

  • Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442

    PubMed  CAS  Google Scholar 

  • Cabrera A, Martín A, Barro F (2002) In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10(1):49–54. doi:10.1023/A:1014270227360

    Article  PubMed  CAS  Google Scholar 

  • Chen QF, Zhang QQ (1994) Improvement of Q-type cytoplasmic male-sterile lines and their restorers. Seeds 1:3–5

    Google Scholar 

  • Chung S-M, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–767. doi:10.1007/s00122-003-1311-3

    Article  PubMed  CAS  Google Scholar 

  • Davies PA, Pallotta MA, Driscoll CJ (1985) Centric fusion between nonhomologous rye chromosomes in wheat. Can J Genet Cytol 27:627–632

    Google Scholar 

  • Doyle JJ, Doyle JH (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Du H, Maan SS (1992) Genetic analysis of male-fertility restoration in wheat: VII. A fertility-inhibiting gene. Crop Sci 32:1414–1420

    Google Scholar 

  • Du H, Maan SS, Hammond JJ (1991) Genetic analysis of male-fertility restoration in wheat: III. Effects of aneuploidy. Crop Sci 31:319–322

    Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  PubMed  CAS  Google Scholar 

  • Hagras AA, Kishii M, Tanaka H, Sato K, Tsujimoto H (2005) Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 80:147–159. doi:10.1266/ggs.80.147

    Article  PubMed  Google Scholar 

  • Hattori N, Kitagawa K, Takumi S, Nakamura C (2002) Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids. Genetics 160:1619–1630

    PubMed  CAS  Google Scholar 

  • Ikeguchi S, Hasegawa A, Murai T, Tsunewaki T (1999) Basic studies on hybrid wheat breeding using the 1BL-1RS translocation chromosome/Aegilops kotschyi cytoplasm system 1. Development of male sterile and maintainer lines with discovery of a new fertility-restorer. Euphytica 109:33–42. doi:10.1023/A:1003689100815

    Article  Google Scholar 

  • Lukaszewski AJ (1994) Manipulation of the genome by chromosome breakage. In: Gill BS, Raupp WJ (eds) Proceedings, US-Japan symposium, classical and molecular cytogenetic analysis, March 1994, Manhattan, Kansas, USA, pp 136–139, 21–23

  • Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94:257–261. doi:10.1023/A:1002916323085

    Article  Google Scholar 

  • Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86(1):121–127. doi:10.1007/BF00223816

    Article  CAS  Google Scholar 

  • Maan SS (1992) Genetic analysis of male-sterility restoration in wheat: IV. Fertile line without major Rf genes. Crop Sci 32:24–28

    Article  Google Scholar 

  • Maan SS, Lucken K (1967) Additional cytoplasmic male sterility-fertility restoration systems in Triticum. Wheat Inf Serv 23:6–9

    Google Scholar 

  • Maan SS, Lucken KA, Bravo JM (1984) Genetic analyses of male-fertility restoration in wheat I. Chromosome location of Rf genes. Crop Sci 24:17–20

    Google Scholar 

  • Martín A, Martínez C, Rubiales D, Ballesteros J (1996) Tritordeum: triticale’s new brother cereal. In: Güedes-Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer, Dordrecht, pp 57–72

    Google Scholar 

  • Martín A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales D, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science, Enfield, pp 377–386

    Google Scholar 

  • Martín AC, Atienza S, Ramírez M, Barro F, Martín A (2008a) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust J Agric Res 59:206–213. doi:10.1071/AR07239

    Article  Google Scholar 

  • Martín AC, Atienza SG, Barro F (2008b) Use of ccSSR markers for the determination of the purity of alloplasmic wheat in different Hordeum cytoplasms. Plant Breed 127:470–475. doi:10.1111/j.1439-0523.2007.01483.x

    Article  CAS  Google Scholar 

  • Mcintosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Proceedings of 10th international wheat genetics symposium. Paestum, Italy, p 4

  • Murai K (2001) Factors responsible for levels of male sterility in photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines. Euphytica 117:111–116. doi:10.1023/A:1004031304997

    Article  Google Scholar 

  • Murai K (2002) Comparison of two fertility restoration systems against photoperiod-sensitive cytoplasmic male sterility in wheat. Plant Breed 121:363–365. doi:10.1046/j.1439-0523.2002.720110.x

    Article  Google Scholar 

  • Nasuda S, Kikkawa Y, Ashida T, Rafiqul AKM, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366. doi:10.1266/ggs.80.357

    Article  PubMed  CAS  Google Scholar 

  • Padilla JA, Martín A (1983) Morphology and cytology of Hordeum chilense X Hordeum bulbosum hybrids. Theor Appl Genet 65(4):353–355. doi:10.1007/BF00276577

    Article  Google Scholar 

  • Pestsova EG, Ganal MV, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697. doi:10.1139/gen-43-4-689

    Article  PubMed  CAS  Google Scholar 

  • Prieto P, Ramírez MC, Ballesteros J, Cabrera A (2001) Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH. Hereditas 135:171–174. doi:10.1111/j.1601-5223.2001.t01-1-00171.x

    Article  PubMed  CAS  Google Scholar 

  • Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat and its relatives. Wheat Inf Serv 81:50–55

    Google Scholar 

  • Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosome and variation. J Morphol 27:179–331. doi:10.1002/jmor.1050270202

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MV (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Sage GCM (1976) Nucleo-cytoplasmic relationship in wheat. Adv Agron 28:265–298

    Google Scholar 

  • Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550. doi:10.1007/BF00325789

    Article  PubMed  CAS  Google Scholar 

  • Thomas HM, Pickering RA (1985) Comparisons of the hybrids Hordeum chilense X Hordeum vulgare, Hordeum chilense X Hordeum bulbosum, Hordeum chilense X Secale cereale and the amphidiploid of Hordeum chilense X Hordeum vulgare. Theor Appl Genet 69(5–6):519–522. doi:10.1007/BF00251097

    Article  Google Scholar 

  • Tsunewaki K (1980) Basic studies on hybrid wheat breeding utilizing the timopheevi cytoplasm and Rf3 gene—summary of the results. Seiken Ziho 29:40–56

    Google Scholar 

  • Tsunewaki K (1993) Genome-plasmon interaction in wheat. Jpn J Genet 68:1–34. doi:10.1266/jjg.68.1

    Article  CAS  Google Scholar 

  • Wilson JA (1984) Hybrid wheat breeding and commercial seed development. Plant Breed Rev 2:303–319

    Google Scholar 

  • Wilson P, Driscoll CJ (1983) Hybrid wheat. In: Frankel R (ed) Heterosis. Monographs on theoretical and applied genetics, vol 6. Springer, Berlin Heidelberg New York, pp 94–123

    Google Scholar 

  • Zhang LL, Zhang YJ (2001) A comparative study on wheat CMS lines with Aegilops juvenalis and Ae. kotschyi cytoplasm. J Hubei Agric Coll 21:193–195

    CAS  Google Scholar 

  • Zhang AM, Nie XL, Liu DC, Guo XL (2001) Advances of hybrid wheat breeding in China. Cereal Res Commun 29:343–350

    Google Scholar 

Download references

Acknowledgments

We thank Dr. P. Lazzeri (Agrasys S.L.) for revision and correction of the English in this manuscript. This work was supported by MICINN (Ministerio de Ciencia e Innovación) projects AGL2006-07703 and AGL2007-65685-C02-01 of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azahara C. Martín.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, A.C., Atienza, S.G., Ramírez, M.C. et al. Chromosome engineering in wheat to restore male fertility in the msH1 CMS system. Mol Breeding 24, 397–408 (2009). https://doi.org/10.1007/s11032-009-9301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9301-z

Keywords

Navigation