Skip to main content
Log in

Development of a molecular linkage map of pearl millet integrating DArT and SSR markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F7 Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high throughput profiling of hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205

    Article  CAS  Google Scholar 

  • Amorim EP, Vilarinhos AD, Cohen KO, Amorim VBO, Santos-Serejo JA, Silva SO, Pestana KN, Santos VJ, Paes NS, Monte DC, Rei RV (2009) Genetic diversity of carotenoid-rich bananas evaluated by diversity arrays technology (DArT). Genet Mol Biol 32:96–103

    Article  PubMed  CAS  Google Scholar 

  • Azhaguvel P (2001) Linkage map construction and identification of QTLs for downy mildew (Sclerospora graminicola) resistance in pearl millet (Pennisetum glaucum (L.) R. Br.). PhD thesis, Department of Agricultural Botany, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, Tamil Nadu, India, p 204

  • Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee R, Bramel PJ, Hash CT, Kolesnikova-Allen MA, Khairwal IS (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Cenci A, Gadaleta A, Tanzarella OA, Porceddu E, Salvi S, Tuberosa R, Figliuolo G, Spagnoletti P, Röder MS, Korzun V (2004) Extension of the “Messapia x dicoccoides” linkage map of Triticum turgidum (L.) Thell. Cell Mol Biol Lett 9:529–541

    PubMed  CAS  Google Scholar 

  • Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, Rakoczy-Trojanowska M (2009) DArT markers for the rye genome-genetic diversity and mapping. BMC Genomics 10:578

    Article  PubMed  Google Scholar 

  • Budak H, Pedraza F, Cregan PB, Baenzinger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290

    Article  CAS  Google Scholar 

  • Busso CS, Liu CJ, Hash CT, Witcombe JR, Devos KM, de Wet JMJ, Gale MD (1995) Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theor Appl Genet 90:242–246

    Article  Google Scholar 

  • Causse MA, Fulton TM, Cho YG, Ahn SN, Chunwongse J, Wu KS, Xiao JH, Yu ZH, Ronald PC, Harrington SE, Second G, McCouch SR, Tanksley SD (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed  CAS  Google Scholar 

  • Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909

    Article  CAS  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Article  PubMed  CAS  Google Scholar 

  • Chowdari KV, Davierwala AP, Gupta VS, Ranjekar PK, Govila OP (1998) Genotype identification and the assessment of genetic relationships in pearl millet (Pennisetum glaucum L.) using the (GATA) 4 microsatellite and RAPDs. Theor Appl Genet 97:154–162

    Article  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249:600–608

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM, Zhu JH, Allouis S, Couchman MS, Liu H, Pittaway TS, Qi XQ, Kolesnikova-Allen M, Hash CT (2001) New molecular marker technologies for pearl millet improvement. Int Sorghum Millets Newsl 42:16–22

    Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Hash CT, Thakur RP, Rao VP, Bhasker Raj AG (2006) Evidence for enhanced resistance to diverse isolates of pearl millet downy mildew through gene pyramiding. Int Sorghum Millets Newslett 47:134–138

    Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • Holloway JL, Knapp SJ (1993) GMendel 3.0 Users guide. Department of Crop and Soil Science, Oregon State University. Corvallis, OR

    Google Scholar 

  • Hurtado P, Olsen KM, Buitrago C, Ospina C, Marin J, Duque M, de Vicente C, Wongtiem P, Wenzel P, Kilian A, Adeleke M, Fregene M (2008) Comparison of simple sequence repeat (SSR) and diversity array technology (DArT) markers for assessing genetic diversity in cassava (Manihot esculenta Crantz). Plant Genetic Resour Char Utili 6(3):208–214

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25

    Article  PubMed  CAS  Google Scholar 

  • Jauhar PP (1968) Inter- and intra-genomal chromosome pairing in an interspecific hybrid and its bearing on basic chromosome number in Pennisetum. Genetica 39:360–370

    Article  Google Scholar 

  • Jauhar PP (1981) Cytogenetics and breeding of pearl millet and related species. Progress and topics in cytogenetics, vol 1. Alan R Liss, New York, pp 1–289

    Google Scholar 

  • Jauhar PP, Hanna WW (1998) Cytogenetics and genetics of pearlmillet. Adv Agron 64:1–26

    Article  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Kapila RK, Yadav RS, Plaha P, Rai KN, Yadav OP, Hash CT, Howarth CJ (2008) Analysis of genetic diversity in pearl millet inbreds using microsatellite markers. Plant Breed 127:33–37

    CAS  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May 2003, Avenue Media, Bologna, Italy, pp 443–461

  • Kolesnikova MA (2001) Mapping new quantitative trait loci (QTL) for downy mildew resistance in pearl millet. PhD thesis, Russian National Academy of Sciences, Moscow, Russia. (English and Russian) p 266

  • Kopecký D, Bartoš J, Lukaszewski AJ, James H, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009) Development and mapping of DArT markers within the Festuca–Lolium complex. BMC Genomics 10:473

    Article  PubMed  Google Scholar 

  • Langridge P, Chalmers K (1998) Techniques for marker development. In: Proceedings of the 9th international wheat genet symposium, vol 1. Saskatchewan, Canada, pp 107–117

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map in pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    CAS  Google Scholar 

  • Lu H, Romero-Severson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  CAS  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9:26

    Article  PubMed  Google Scholar 

  • Mariac C, Luong V, Kapran I, Mamadou A, Sagnard M, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezançon G, Pham J, Vigouroux Y (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58

    Article  PubMed  CAS  Google Scholar 

  • Martel E, De Nay D, Siljak-Yakovlev S, Brown S, Sarr A (1997) Genome size variation and basic chromosome number in pearl millet and fourteen related Pennisetum species. J Hered 88:139–143

    Google Scholar 

  • Moore G (2000) Cereal chromosome structure, evolution and pairing. Annu Rev Plant Physiol Plant Mol Biol 51:195–222

    Article  PubMed  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK Borner A (2010) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol. Breeding, DOI 10.1007/s11032-010-9411-7

  • Ozias-Akins P, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis-linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Nat Acad Sci (USA) 95:5127–5132

    Article  CAS  Google Scholar 

  • Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  Google Scholar 

  • Parida SK, Kumar KAR, Dalal V, Singh NK, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  PubMed  CAS  Google Scholar 

  • Pedraza-Garcia F, Specht JE, Dweikat I (2010) A new PCR-based linkage map in pearl millet. Crop Sci 50:1754–1756

    Article  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Grama A, Ronin YI, Korol AB, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1059–1061

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software (http://darwin cirad fr/darwin)

  • Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat markers from bacterial artificial chromosome without sub-cloning. Biotechniques 31:355–362

    PubMed  CAS  Google Scholar 

  • Qi X, Pittaway TS, Lindup S, Liu H, Wateran E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, PljevljakusiT D, Waterman E, Weyen EJ, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Owell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    PubMed  CAS  Google Scholar 

  • Risterucci AM, Hippolyte I, Perrier X, Xia L, Caig V, Evers M, Huttner E, Kilian A, Jean-Christophe Glaszmann JC (2009) Development and assessment of diversity arrays technology for high-throughput DNA analyses in Musa. Theor Appl Genet 119:1093–1103

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Senthilvel S, Jayashree B, Mahalakshmi V, Sathish Kumar P, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8:119–127

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal HS (2007) An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum × T. monococcum RIL population. Theor Appl Genet 115:301–312

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Thudi M, Senthilvel S, Bottley A, Hash CT, Reddy AR, Feltus AF, Paterson AH, Hoisington DA, Varshney RK (2010) A comparative assessment of the utility of PCR-based marker systems in pearl millet. Euphytica 174:253–260

    Article  CAS  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad A, Howarth CJ, Jannink JL, Anderson JM, Rossnage BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HW, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    Article  PubMed  Google Scholar 

  • Tostain S (1992) Enzyme diversity in pearl millet (Pennisetum glaucum L.) 3. Wild millet. Theor Appl Genet 83:733–742

    Article  CAS  Google Scholar 

  • Tostain S, Marchais L (1989) Enzyme diversity in pearl millet (Pennisetum glaucum). 2. Africa and India. Theor Appl Genet 77:634–640

    Article  Google Scholar 

  • Tostain S, Riandey MF, Marchais L (1987) Enzyme diversity in pearl millet (Pennisetum glaucum). 1. West Africa. Theor Appl Genet 74:188–193

    Article  Google Scholar 

  • van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • vom Brocke K, Christinck A, Weltzien ER, Presterl T, Geiger HH (2003) Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semi-arid regions of India. Crop Sci 43:1680–1689

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935

    Article  CAS  Google Scholar 

  • Wendel JF, Edwards MD, Stuber CW (1987) Evidence for multilocus genetic control of preferential fertilization in maize. Heredity 58:297–302

    Article  PubMed  Google Scholar 

  • Wenzl P, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith K, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Killian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • White J, Law JR, Mackay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theo Appl Genet 116:439–453

    Article  CAS  Google Scholar 

  • Wilson WP, Hess DE, Hanna WW, Kumar KA, Gupta SC (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Protect 23:865–870

    Article  Google Scholar 

  • Wittenberg AH, Van der Lee T, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Gen Genomics 274:30–39

    Article  CAS  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, Carmen de Vicente M, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploid and recombinant inbred populations of rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Pang W, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the ‘Generation Challenge Programme’ of the Consultative Group on International Agricultural Research (CGIAR) and by the Department of Biotechnology, Government of India. The authors thank DArT P/L, Australia for providing technical know-how, software, and helpful discussions and the Council of Scientific and Industrial Research (CSIR), India for providing a Junior Research Fellowship to Mr V. Rajaram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Senthilvel.

Additional information

Communicated by A. Schulman.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Supriya, A., Senthilvel, S., Nepolean, T. et al. Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123, 239–250 (2011). https://doi.org/10.1007/s00122-011-1580-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1580-1

Keywords

Navigation