Skip to main content
Log in

Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Segregation distortion can negatively impact on gains expected using selection. In order to increase our understanding of genetic factors that may influence the extent and direction of segregation distortion, segregation distortion analyses were conducted in four different doubled haploid (DH) populations. A high-density composite map of barley was then constructed by integrating information from the four populations. The composite map contained 2,111 unique loci, comprising RFLP, SSR and DArT markers and spanned 1,136 cM. In the four populations investigated, the proportion of markers with segregation distortion ranged from 15 to 38%, depending on the population. The highest distortion was observed in populations derived by the microspore culture technique. Distorted loci tended to be clustered, which allowed definition of segregation distortion regions (SDRs). A total of 14 SDRs were identified in the 4 populations. Using the high-density composite map, several SDRs were shown to have consistent map locations in two or more populations; one SDR on chromosome 1H was present in all four populations. The analysis of haplotypes underlying seven SDRs indicated that in three cases the under-represented haplotypes were common across populations, but for four SDRs the under-represented haplotypes varied across populations. Six of the seven centromeric regions harboured SDRs suggesting that genetic processes related to position near a centromere caused the segregation distortion in these SDRs. Other SDRs were most likely due to the methods used to produce the DH populations. The association of the SDRs identified in this study and some of the genes involved in the process of haploid production described in other studies were compared. The composite map constructed in this study provides an additional resource for the barley community via increased genome coverage and the provision of additional marker options. It has also enabled further insights into mechanisms that underpin segregation distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE (2010) Basal host resistance of barley to powdery mildew: connecting QTLs and candidate genes. Mol Plant Microbe Interact 23:91–103

    Google Scholar 

  • Bataillon TL, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    PubMed  Google Scholar 

  • Beavis WD, Grant D (1992) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82:636–644

    Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    Article  PubMed  Google Scholar 

  • Bovill WD, Ma W, Ritter K, Collard BCY, Davis M, Wildermuth GB, Sutherland MW (2006) Identification of novel QTL for resistance to crown rot in the doubled haploid wheat population ‘W21MMT70’ × ‘Mendos’. Plant Breed 125:538–543

    Article  Google Scholar 

  • Cameron DR, Moav R (1957) Inheritance in Nicotiana tabacum. XXVII. Pollen killer, an alien genetic locus inducing abortion of microspores not carrying it. Genetics 42:326–335

    PubMed  Google Scholar 

  • Cervera MT, Storme V, Ivens B, Gusmao J, Liu BH et al (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787–809

    PubMed  Google Scholar 

  • Chen FQ, Hayes PM (1989) A comparison of Hordeum bulbosum-mediated haploid production efficiency in barley using in vitro floret and tiller culture. Theor Appl Genet 77:701–704

    Google Scholar 

  • Chen XW, Cistué L, Muñoz-Amatriaín M, Sanz M, Romagosa I, Castillo AM, Vallés MP (2007) Genetic markers for doubled haploid response in barley. Euphytica 158:287–294

    Article  Google Scholar 

  • Clark CM, Schweikert G, Toomajian C, Ossowsksi S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds D, Chen HM, Frazer K, Huson HD, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342

    Article  PubMed  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato, K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim Y-S, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH Jr (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605

    Article  PubMed  Google Scholar 

  • Davies PA, Morton S (1998) A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep 17:206-210

    Google Scholar 

  • Devaux P, Kilian A, Kleinhofs A (1995) Comparative mapping of the barley genome with male and female recombination-derived, doubled haploid populations. Mol Gen Genet 249:600–608

    Article  PubMed  Google Scholar 

  • Echt CS, Kidwell KK, Knapp SJ, Osborn TC, McCoy TJ (1994) Linkage mapping in diploid alfalfa (Medicago sativa). Genome 37:61–71

    Article  PubMed  Google Scholar 

  • Eujayl I, Baum M, Powell W, Erskine W, Pehu E (1998) A genetic linkage map of lentil (Lens sp. L) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97:83–89

    Article  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  Google Scholar 

  • Fu Y, Wen TJ, Ronin YI, Chen HD, Guo L, Mester DI, Yang YJ, Lee M, Korol AB, Ashlock DA, Schnable PS (2006) Genetic dissection of intermated recombinant inbred lines using a new genetic map of maize. Genetics 174:1671–1683

    Article  PubMed  Google Scholar 

  • Gale MD, Rees H (1970) Genes controlling chiasma frequency in Hordeum. Heredity 25:393–410

    Article  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, Peiffer JA, McMullen MD, Grills GS, Ross-Ibarra J, Ware DH, Buckler ES (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    Article  PubMed  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of a RFLP map of barley. Theor Appl Genet 83:250–256

    Article  Google Scholar 

  • Han MJ, Jung KH, Yi G, Lee DY, An G (2006) Rice immature pollen 1 (RIP1) is a regulator of late pollen development. Plant Cell Physiol 47:1457–1472

    Article  PubMed  Google Scholar 

  • Hauge BM, Hanley SM, Cartinhour S, Cherry JM, Goodman HM (1993) An integrated genetic/RFLP map of the Arabidopsis thaliana genome. Plant J 3:745–754

    Article  Google Scholar 

  • Hayes PM, Cerono J, Witsenhoer H, Kuiper M, Zabeau M, Sato K, Kleinhofs A, Kudrna D, Kilian A, Saighai Maroof M, Hoffman D (1997). Characterizing and exploiting genetic diversity and quantitative traits in barley. J Agric Genomics 3:2. http://www.ncgr.org/research/jag/

  • Heun M, Kennedy AE, Anderson JA, Lapitan NLV, Sorrells ME, Tanksley SD (1991) Construction of a restriction fragment length polymorphism map for barley (Hordeum vulgare L.). Genome 34:437–447

    Google Scholar 

  • Isidore E, van Os H, Andrzejewski S, Bakker J, Barrena I, Bryan GJ, Caromel B, van Eck H, Ghareeb B, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JR, Rousselle-Bourgeois F, van Vliet J, Waugh R (2003) Toward a marker-dense meiotic map of the potato genome: lessons from linkage group I. Genetics 165:2107–2116

    PubMed  Google Scholar 

  • Jaccoud D, Peng KM, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  Google Scholar 

  • Jeuken MR, Wijk V, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa × L. saligna F2 populations. Theor Appl Genet 103:638–647

    Article  Google Scholar 

  • Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185

    Article  Google Scholar 

  • Kasha KJ, Reinbergs E (1981) Recent developments in the production and utilization of haploids in barley. In: Barley genetics IV. Proceedings of the 4th international barley genetics symposium. Edinburgh University Press, pp 655–665

  • Kasha KJ, Simion E, Oro R, Yao QA, Hu TC, Carlson AR (2001) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385

    Google Scholar 

  • Kawabe A, Forrest A, Wright SI, Charlesworth D (2008) High DNA sequence diversity in pericentromeric genes of the plant Arabidopsis lyrata. Genetics 179:985–995

    Article  PubMed  Google Scholar 

  • Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554

    Article  Google Scholar 

  • Kintzios S, Islam RM, Fischbeck G (1994) Distorted segregation for mildew resistance in doubled haploid lines of spring barley. Plant breed 112:248–251

    Article  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    Article  Google Scholar 

  • Kumar S, Gill BS, Faris JD (2007) Identification and characterization of segregation distortion loci along chromosome 5B in tetraploid wheat. Mol Genet Genomics 278:187–196

    Article  PubMed  Google Scholar 

  • Künzel G, Waugh R (2002) Integration of microsatellite markers into the translocation-based physical RFLP map of barley chromosome 3H. Theor Appl Genet 105:660–665

    Article  PubMed  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M (2000) Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet 101:669–676

    Article  Google Scholar 

  • Langridge P, Karakousis A, Collins N, Kretschmer J, Manning S (1995) A consensus linkage map of barley. Mol Breed 1:389–395

    Article  Google Scholar 

  • Lee HR, Bae IH, Park SW, Kim HJ, Min WK, Han JH, Kim KT, Kim BD (2009) Construction of an integrated pepper map using RFLP, SSR, CAPS, AFLP, WRKY, rRAMP, and BAC end sequences. Mol Cells 27:21–37

    Article  PubMed  Google Scholar 

  • Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100:127–138

    Article  Google Scholar 

  • Li HB, Zhou MX, Liu CJ (2009) A major QTL conferring crown rot resistance in barley and its association with plant height. Theor Appl Genet 118:903–910

    Article  PubMed  Google Scholar 

  • Loegering WG, Sears ER (1963) Distorted inheritance of stem-rust resistance of timstein wheat caused by a pollen killing gene. Can J Genet Cytol 5:67–72

    Google Scholar 

  • Logue SL, Oti-Boateng C, Karakousis A, Kretschmer JM, Manning S, Lance RCM, Langridge PJ (1995). Segregation analysis of DNA markers in anther culture-derived populations of barley (Hordeum vulgare L.). In: Proceedings of the 7th Aus Barley Tech Symposium. Perth, WA, pp 210–217

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  Google Scholar 

  • Lowe BA, Way MM, Kumpf JM, Rout J, Warner D, Johnson R, Armstrong CL, Spencer MT, Chomet PS (2006) Marker assisted breeding for transformability in maize. Mol Breed 18:229–239

    Article  Google Scholar 

  • Lu H, Romero-Steverson J, Bernardo R (2002) Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet 105:622–628

    Article  PubMed  Google Scholar 

  • Lyttle TW (1991) Segregation distorters. Annu Rev Genet 25:511–557

    Article  PubMed  Google Scholar 

  • Mangelsdorf PC, Jones DF (1926) The expression of Mendelian factors in the gametophyte of maize. Genetics 11:423–455

    PubMed  Google Scholar 

  • Manninen OM (2000) Association between anther-culture response and molecular markers on chromosome 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor Appl Genet 100:57–62

    Article  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  Google Scholar 

  • Marino CL, Nelson JC, Lu YH, Sorrells ME, Leroy P (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    Article  PubMed  Google Scholar 

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley ST (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  Google Scholar 

  • Messmer MM, Keller M, Zanetti S, Keller B (1999) Genetic linkage map of wheat × spelt cross. Theor Appl Genet 98:1163–1170

    Article  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution: grasses line up and from a circle. Curr Biol 5:737–739

    Article  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Castillo AM, Chen XW, Cistué L, Vallés MP (2008) Identification and validation of QTLs for green plant percentage in barley (Hordeum vulgare L.) anther culture. Mol Breed 22:119–129

    Article  Google Scholar 

  • Murigneux A, Baud S, Beckert M (1993) Molecular and morphological evaluation of doubled haploid lines in maize (II). Comparison with single-seed descent lines. Theor Appl Genet 87:278–287

    Article  Google Scholar 

  • Nakagahra M (1972) Genetic mechanism on the distorted segregation of marker genes belonging to the eleventh linkage group in cultivated rice. Jpn J Breed 22:232–238

    Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu Y, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat: homoeologous group 2. Genome 38:516–524

    PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat: homoeologous group 3. Genome 38:525–533

    PubMed  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995c) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  Google Scholar 

  • Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327:92–94

    Article  PubMed  Google Scholar 

  • Paterson A, Lander E, Hewitt J, Paterson S, Lincoln S, Tanksley S (1988) Resolution of quantitative traits into Mendelian factors by using a complete map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  Google Scholar 

  • Peng J, Korol AB, Fahima T, Roder M, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Gen Res 10:1509–1531

    Article  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  PubMed  Google Scholar 

  • Perry Gustafson J, Ma XF, Korzun V, Snape JW (2009) A consensus map of rye integrating mapping data from five mapping populations. Theor Appl Genet 118:793–800

    Article  PubMed  Google Scholar 

  • Pickering RA (1980) Attempts to overcome partial incompatibility between Hordeum vulgare L and H. bulbosum L. Euphytica 29:369–377

    Article  Google Scholar 

  • Pickering RA (1983) The location of a gene for incompatibility between Hordeum vulgare L. and H. bulbosum L. Heredity 51:455–459

    Article  Google Scholar 

  • Pickering RA, Hayes JD (1976) Partial incompatibility in crosses between Hordeum vulgare L. and Hordeum bulbosum L. Euphytica 25:671–678

    Article  Google Scholar 

  • Plomion C, O’Malley DM, Durel CE (1995) Genomic analysis in maritime pine (Pinus pinaster): comparison of two RAPD maps using selfed and open-pollinated seeds of the same individual. Theor Appl Genet 90:1028–1034

    Article  Google Scholar 

  • Powell W, Thomas WTB, Baird E, Lawrence P, Booth A, Harrower B, McNicol JW, Waugh R (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:48–59

    Google Scholar 

  • Qi X, Stam P, Lindhout P (1996) Comparison and integration of four barley genetic maps. Genome 39:379–394

    Article  PubMed  Google Scholar 

  • Ramsay L, Macaulay M, Ivanissevich SD, Maclean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2000

    PubMed  Google Scholar 

  • Rhoades MM (1942) Preferential segregation in maize. Genetics 27:395–407

    PubMed  Google Scholar 

  • Rhoades MM (1966) The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize. Genetics 53:989–1020

    PubMed  Google Scholar 

  • Rick CM (1966) Abortion of male and female gametes in the tomato determined by allelic interactions. Genetics 53:85–96

    PubMed  Google Scholar 

  • Rick CM, DeVerna JW, Chetelat RT, Stevens MA (1986) Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc Natl Acad Sci 83:3580–3583

    Article  PubMed  Google Scholar 

  • Scoles GJ, Kibirge-Sebunya IN (1983) Preferential abortion of gametes in wheat induced by an Agropyron chromosome. Can J Genet Cytol 25:1–6

    Google Scholar 

  • Sebastian RL, Howell EC, Kink GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled-haploid mapping populations. Theor Appl Genet 100:75–81

    Article  Google Scholar 

  • Sewell MM, Sherman BK, Neale DB (1999) A consensus map for loblolly pine (Pinus taeda L.). I. Construction and integration of individual linkage maps from two outbred three generation pedigrees. Genetics 151:321–330

    PubMed  Google Scholar 

  • Song XL, Wang K, Guo WZ, Zhang J, Zhang TZ (2005) A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. × G. barbadense L. Genome 48:378–390

    Article  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a computer package: JOINMAP. Plant J 5:739–744

    Article  Google Scholar 

  • Steffenson BJ, Jin Y, Rossnagel BG, Rasmussen JB, Kao K (1995) Genetics of multiple disease resistance in a doubled haploid population of barley. Plant Breed 114:50–54

    Article  Google Scholar 

  • Tani N, Takahashi T, Iwata H, Mukai Y, Ujino-Ihara T, Matsumoto A, Yoshimura K, Yoshimaru H, Murai M, Nagasaka K (2003) A consensus linkage map for sugi (Cryptomeria japonica) from two pedigrees, based on microsatellites and expressed sequence tags. Genetics 165:1551–1568

    PubMed  Google Scholar 

  • Taylor DR, Ingvarsson PK (2003) Common features of segregation distortion in plants and animals. Genetica 117:27–35

    Article  PubMed  Google Scholar 

  • Thompson DM, Chalmers K, Waugh R, Forster BP, Thomas WTB (1991) The inheritance of genetic markers in microspore-derived plants of barley (Hordeum vulgare L.). Theor Appl Genet 81:487–492

    Article  Google Scholar 

  • Vaillancourt RE, Slinkard AE (1992) Inheritance of new genetic markers in lentil (Lens Miller). Euphytica 64:227–236

    Article  Google Scholar 

  • Vaillancourt RE, Slinkard AE (1993) Linkage of morphological and isozyme loci in lentil (Lens culinaris L.). Can J Plant Sci 73:917–926

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrells ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap version 3.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  Google Scholar 

  • van Ralph B (2008) GGT 2.0: versatile software for visualization and analysis of genetic data. J Hered 99:232–236

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci 101:9915–9920

    Article  PubMed  Google Scholar 

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang JP, Raman R, Smith K, Muehlbauer G, Chalmers K, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • Wu J, Jenkins J, Zhu J, McCarty J, Watson C (2003) Monte Carlo simulations on marker grouping and ordering. Theor Appl Genet 107:568–573

    Article  PubMed  Google Scholar 

  • Xu Z, Dooner HK (2006) The maize aberrant pollen transmission 1 gene is a SABRE/KIP homolog required for pollen tube growth. Genetics 172:1251–1261

    Article  PubMed  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N, McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, doubled haploids, and recombinant inbred populations in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  Google Scholar 

  • Yan JB, Tang H, Huang YQ, Zhang YL, Li JS (2003) Genetic analysis of segregation distortion of molecular markers in maize F2 population. Acta Genet Sin 30:913–918

    PubMed  Google Scholar 

  • Yap IV, Schneider D, Kleinberg J, Matthews D, Cartinhour S, McCouch SR (2003) A graph-theoretic approach to comparing and integrating genetic, physical and sequence-based maps. Genetics 165:2235–2247

    PubMed  Google Scholar 

  • Zamir D, Tadmor Y (1986) Unequal segregation of nuclear genes in plants. Bot Gaz 147:355–358

    Article  Google Scholar 

  • Zhang HB, Dvorák J (1990) Characterization and distribution of an interspersed repeated nucleotide sequence from Lophopyrum elongatum and mapping of a segregation-distortion factor with it. Genome 33:927–936

    PubMed  Google Scholar 

  • Zhang LY, Wang SQ, Li HH, Deng QM, Zheng AP, Li SC, Li P, Li ZL, Wang JK (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet. doi:10.1007/s00122-010-1372-z

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principle QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a double-haploid population of barley. Theor Appl Genet 99:1221–1232

    Article  Google Scholar 

  • Zivy M, Devaux P, Blaisonneau J, Jean R, Thiellement H (1992) Segregation distortion and linkage studies in microspore-derived doubled haploid lines of Hordeum vulgare L. Theor Appl Genet 83:919–924

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Australian Grains Research and Development Corporation (GRDC) for funding the project through the Australia China Collaboration on Barley Genetic Resources (Project UT8). We acknowledge Professor Peter Langridge from the University of Adelaide for providing the SSR data for Clipper/Sahara. We also thank Professor Andris Kleinhofs from Washington State University for providing RFLP data for Steptoe/Morex. We thank the reviewers for their useful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobing Li.

Additional information

Communicated by R. Waugh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figures (PDF 643 kb)

Supplementary Table 1 (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Kilian, A., Zhou, M. et al. Construction of a high-density composite map and comparative mapping of segregation distortion regions in barley. Mol Genet Genomics 284, 319–331 (2010). https://doi.org/10.1007/s00438-010-0570-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-010-0570-3

Keywords

Navigation