Skip to main content

Tritordeum: Triticale’s New Brother Cereal

  • Chapter
Triticale: Today and Tomorrow

Part of the book series: Developments in Plant Breeding ((DIPB,volume 5))

Abstract

The amphiploids between Hordeum chilense and Triticutn spp. (tritordeum) resemble their wheat parents agronomically. We have synthesized more than one hundred primary tritordeums for breeding a new cereal crop. From the results obtained on the first two cycles of selection, in which the yield level of tritordeum was raised to that of traditional wheat varieties, it is clear that tritordeum has the potential to become a crop when sufficient breeding effort is applied. Tritordeum is already been exploited as a bridge for introducing the genetic variability available in the section Anisolepis of the genus Hordeum into wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, J.B., J. Ballesteros, J.A. Sillero & L.M. Martin, 1992. Tritordeum: a new crop of potential importance in the food industry. Hereditas 116: 193–197.

    Google Scholar 

  • Barcelô, P., A. Cabrera, C. Hagel & H. Lörz, 1994a. Production of doubled-haploids plants from tritordeum anther culture. Theor. Appl. Genet. 87: 741–745.

    Google Scholar 

  • Barcelô, P., C. Hagel, D. Becker, A. Martin & H. Lörz, 1994b. Transgenic cereal (Tritordeum)plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. The Plant Journal 5 (4): 583–592.

    Article  Google Scholar 

  • Barcelô, P., P.A. Lazzeri, A. Martin & H. Lörz, 1991. Competence of cereal leaf cells. I. Patterns of proliferation and regeneration capability in vitro of inflorescence sheath leaves of barley, wheat and tritordeum. Plant Sci. 77: 243–251.

    Article  Google Scholar 

  • Barcelô, P., P.A. Lazzeri, P. Hernandez, A. Martin & H. Lörz, 1993. Morphogenic cell and protoplast cultures of tritordeum. Plant Sci. 88: 209–218.

    Article  Google Scholar 

  • Barro, F., A.G. Fontes & J.M. Maldonado, 1991. Organic nitrogen content and nitrite reductase activities in tritordeum and wheat grown under nitrate or ammonium. Plant and Soil 135: 251–256.

    Article  CAS  Google Scholar 

  • Bothmer, R. von, J. Flink & T. Landström, 1987. Meiosis in Hordeuminterspecific hybrids. II. Triploid hybrids. Evolutionary Trends in Plants, Vol. 1 (1): 41–49.

    Google Scholar 

  • Bothmer, R. von & A. Hagberg, 1983. Pre-breeding and wide hybridization in barley. In: Pre-breeding in relation to genebanks. EUCARPIA workshop, Beograd-Zemun, Yugoslavia, 1983. pp. 41–53.

    Google Scholar 

  • Bothmer, R. von & N. Jacobsen, 1986. Interspecific crosses in Hordeum. PI. Syst. Evol. 153: 49–64.

    Article  Google Scholar 

  • Bothmer, R. von, M. Kotimäki & Z. Persson, 1985. Genome relationships between eight diploid Hordeum species. Hereditas 103: 1–16.

    Article  Google Scholar 

  • Cabrera, A.& A. Martin, 1991 Cytology and morphology of the amphiploid Hordeum chilense(4x) x Aegilops squarrosa(4x). Theor. Appl. Genet. 81: 758–760.

    Google Scholar 

  • Cabrera, A. & A. Martin, 1992. A trigeneric hybrid between Hordeum, Aegilopsand Secale. Genome 35: 647–649.

    Article  Google Scholar 

  • Cabrera, A. & A. Martin, 1992. A trigeneric hybrid between Hordeum, Aegilopsand Secale. Genome 35: 647–649.

    Article  Google Scholar 

  • Clement, S.L. & D.G. Lester, 1990. Screening wild Hordeumnspecies for resistance to russian wheat aphid. Cereal Res. Comm. 18: 173–177.

    Google Scholar 

  • Cubero, J.I., A. Martin, T. Milian, A. Gomez-Cabrera & A. de Haro, 1986. Tritordeum: a new alloploid of potential importance as a protein source crop. Crop Sci. 26: 1186–1190.

    Article  CAS  Google Scholar 

  • Fedak, G., 1978. Progeny of barley-wheat intercrosses. Barley Genet. Newsl. 8: 34–35.

    Google Scholar 

  • Fedak, G., 1992. Intergeneric hybrids with Hordeum. In: P.R. Shewry (Ed.), Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, CAB International, UK, pp. 45–70.

    Google Scholar 

  • Fernandez, J.A. & N. Jouve, 1988. The addition of Hordeum chilensechromosomes to Triticum turgidumcony. durum. Biochemical, karyological and morphological characterisation. Euphytica 37: 247–259.

    CAS  Google Scholar 

  • Fernandez-Escobar, J. & A. Martin, 1985. A trigeneric hybrid from Triticale x Tritordeum. Z. Pflanzenziichtg 95: 311–318.

    Google Scholar 

  • Fernández-Escobar, J. & A. Martin, 1988. A hybrid between hexaploid triticale and octoploid tritordeum. Cereal Res. Comm. 16: 45–51.

    Google Scholar 

  • Fernández-Escobar, J. & A. Martin, 1989. A self-fertile trigeneric hybrid in the Triticeae involving Triticum, Hordeum. and Secale. Euphytica 42: 291–296.

    Google Scholar 

  • Finch, R.A. & M.D. Bennet, 1980. Mitotic and meiotic chromosome behaviour in new hybrids of Hordeumwith Triticumand Secale. Heredity 44: 201–209.

    Article  Google Scholar 

  • Foster, B.P., M.S. Philips, T.E. Miller, E. Baird & W. Powell, 1990. Chromosome location of genes controlling tolerance to salt (NaC1) and vigour in Hordeum vulgareand H. chilense. Heredity 65: 99–107.

    Article  Google Scholar 

  • Gallardo, M. & E. Fereres, 1989. Resistencia a la sequia del Tritordeo (Hordeum chilensex Triticum turgidum)en relation a la del trigo, cebada y triticale. Invest. Agr.: Prod. Veg. Vol. 4: 361–375.

    Google Scholar 

  • Kerber, E.R., 1991. Stem rust resistance in ‘Canthatch’ hexaploid wheat induced by a nonsuppressor mutation on chromosome 7DL. Genome 34: 935–939.

    Article  Google Scholar 

  • Kimber, G. & P.J. Sallee, 1978. An amphiploid of Triticum timopheevi x Hordeum bogdanii. In: Cytogenetics and Crop Improvement Symposium, Varanasi, India, pp. 98–136.

    Google Scholar 

  • Kruse, A., 1973. Hordeum x Triticum hybrids. Hereditas 73: 157–161.

    Article  Google Scholar 

  • Linde-Laursen, LB., Schrader, O. & Zerneke F., 1993. Chromosomal constitution of rye (Secale cereale) Hordeum chilense addition lines. Hereditas 119: 21–29.

    Article  Google Scholar 

  • Martin, A., 1983. The cytology and morphology of the hybrid Hordeum chilense. x Aegilops squarrosa. The Journal of Heredity 74: 487.

    Google Scholar 

  • Martin, A., 1988. Tritordeum: the first ten years. Rachis 7: 12–15.

    Google Scholar 

  • Martin, A. & V. Chapman, 1977. A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res. Comm. 5: 365–368.

    Google Scholar 

  • Martin, A. & J.I. Cubero, 1981. The use of Hordeum chilensein cereal breeding. Cereal Res. Comm. 9: 317–323.

    Google Scholar 

  • Martin, A., T. Milian & J. Fernandez-Escobar, 1988. Morfologia y citologia del hfbrido y anfiploide Hordeum chilense x secale cereale. Ann. Aula Dei 19: 135–142.

    Google Scholar 

  • Martin, A., J.A. Padilla & J. Fernandez-Escobar, 1987. The amphiploid Hordeum chilensex Triticum aestivumssp. sphaerococcum. Variability in octoploid tritordeum. Plant Breeding 99: 336–339.

    Article  Google Scholar 

  • Martin, A, D. Rubiales, J.M. Rubio & A. Cabrera, 1995. Hybrids of Hordeum vulgareand tetra-, hexa-, and octoploid tritordeum (amphiploid H. chilense x Triticumspp). Hereditas 123: 175–182.

    Article  Google Scholar 

  • Martin, A. & E. Sanchez-Monge, 1980. A hybrid between Hordeum chilense and Triticum turgidum. Cereal Res. Comm. 8: 349–353.

    Google Scholar 

  • Martin, A. & E. Sanchez-Monge Laguna, 1980. Effects of the 513 system on control of pairing in Hordeum chilense x Triticum aestivum hybrids. Z. Pflanzenzüchtg 85: 122–127.

    Google Scholar 

  • Martin, A. & E. Sanchez-Monge Laguna, 1982. Cytology and morphology of the amphiploid Hordeum chilense x Triticum turgidum cony. durum. Euphytica 31: 262–267.

    Article  Google Scholar 

  • Milian, T. & A. Martin, 1992. Effects of Hordeum chilense and Triticum cytoplasms on agronomical traits in hexaploid tritordeum. Plant Breeding 108: 328–331.

    Article  Google Scholar 

  • Miller, T.E. & V. Chapman, 1978. The amphiploid of Hordeum chilensex Triticum aestivum. Cereal Res. Comm. 6: 351–352.

    Google Scholar 

  • Miller, T.E., S.M. Reader & V. Chapman, 1982. The addition of Hordeum chilensechromosomes to wheat. In: C. Broertjes (Ed.), Induced Variability in Plant Breeding, Pudoc, Wageningen, pp. 79–81.

    Google Scholar 

  • Nielsen, J., 1987. Reaction of Hordeum species to the smut fungi Ustilago nuda and U. tritici. Can. J. Bot. 65: 2024–2027.

    Article  Google Scholar 

  • Padilla, J.A. & A. Martin, 1983. New hybrids between Hordeum chilenseand tetraploid wheats. Cereal Res. Comm. 11: 5–7.

    Google Scholar 

  • Padilla, J.A. & A. Martin, 1983. Morphology and cytology of Hordeumm chilense x Hordeum bulbosum hybrids. Theor. Appl. Genet. 65: 353–355.

    Article  Google Scholar 

  • Padilla, J.A. & A. Martin, 1987. Cytology, fertility and morphology of amphiploids Hordeum chilense x tetraploid wheats (Tritordeum). Plant Breeding 99: 295–302.

    Article  Google Scholar 

  • Parlevliet, J.E., 1978. Race-specific aspects of polygenic resistance of barley to leaf rust Puccinia hordei. Neth. J. Plant Pathol. 84: 121–126.

    Google Scholar 

  • Person-Dedryver, F., J. Jahier, & T.E. Miller, 1990. Assessing the resistance to cereal root-knot nematode, Meloidogyne naasiin a wheat line with the added chromosome arm 1HchS of Hordeum chilense. J. Genet. & Breed. 44: 291–296.

    Google Scholar 

  • Rong, J & L. Wang, 1989. Selection of wheat barley octoploid. Hereditas (Beijing) 11: 1–4.

    Google Scholar 

  • Rubiales, D. & R.E. Niks, 1992a. Low appressorium formation by rust fungi on Hordeum chilense lines. Phytopathol. 82: 1007–1012.

    Article  Google Scholar 

  • Rubiales, D. & R.E. Niks, 1992b. Histological responses in Hordeum chilenseto brown and yellow rust fungi. Plant Pathol. 41: 611–617.

    Article  Google Scholar 

  • Rubiales, D., J. Ballesteros & A. Martin, 1991. The reaction of X Tritordeum and its Triticum spp. and Hordeum chilense parents to rust diseases. Euphytica 54: 75–81.

    Article  Google Scholar 

  • Rubiales, D., J. Ballesteros & A. Martin, 1992. Resistance to Septori tritici in Hordeum chilense x Triticum spp. amphiploids. Plant Breeding 108: 281–286.

    Article  Google Scholar 

  • Rubiales, D., J.K.M. Brown & A. Martin, 1993a. Hordeum chilense resistance to powdery mildew and its potential use in cereal breeding. Euphytica 67: 215–220.

    Article  Google Scholar 

  • Rubiales, D., R.E. Niks, R.G. Dekens & A. Martin, 1993b. Histology of the infection of tritordeum and its parents by cereal brown rust. Plant Pathology 42: 93–99.

    Article  Google Scholar 

  • Rubiales, D., R.E. Niks & A. Martin, 1993e. Genomic interactions in the resistance to mildew and rust fungi in hybrids and amphiploids involving the genera Triticum, Hordeum and Secale. Cereal Res. Comm. 21: 187–194.

    Google Scholar 

  • Rubiales, D., R.E. Niks & A. Martin, 1993e. Genomic interactions in the resistance to mildew and rust fungi in hybrids and amphiploids involving the genera Triticum, Hordeumand Secale. Cereal Res. Comm. 21: 187–194.

    Google Scholar 

  • Rubiales, D., R.E. Niks & A. Martin, 1993e. Genomic interactions in the resistance to mildew and rust fungi in hybrids and amphiploids involving the genera Triticum, Hordeumand Secale. Cereal Res. Comm. 21: 187–194.

    Google Scholar 

  • Sanchez-Monge, E. & C. Soler, 1973. Wheat and Triticale in rye cytoplasm. Proc. IV Int. Wheat Genet. Symp. 387–390.

    Google Scholar 

  • Sanchez-Monge Laguna, E. & A. Martin, 1982. Hordeum chilense x Hordeum vulgare hybrids. Z. Pflanzenzüchtg 89: 115–120.

    Google Scholar 

  • Schrader, O. & W. Pohler, 1985. Seed set from a colchicine-treated trigeneric hybrid of the cross Hordeum chilense(2x) x Triticale (6x). Cereal Res. Comm. 13: 63–69.

    Google Scholar 

  • Subrahmanyam, N.C. 1976. Interspecific hybridization, chromosome elimination and haploidy in Hordeum. B.G.N. 6: 69–70.

    Google Scholar 

  • Thomas, H.M. & R.A. Pickering, 1985. Comparisons of the hybrid Hordeum chilensex H. vulgare, H. chilensex H. bulbosum, H. chilensex Secale cerealeand the amphiploid of H. chilensex H. vulgare. Theor. Appl. Genet. 69: 519–522.

    Article  Google Scholar 

  • Vedel, F., F. Quertier, Y. Cauderon, F. Dosba & G. Doussiault, 1981. Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as a genetic marker. Theor. Appl. Genet. 59: 239–245.

    Google Scholar 

  • Zillinsky, F.J., 1974. The development of triticale. Advances in Agronomy 315–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Martín, A., Martínez-Araque, C., Rubiales, D., Ballesteros, J. (1996). Tritordeum: Triticale’s New Brother Cereal. In: Guedes-Pinto, H., Darvey, N., Carnide, V.P. (eds) Triticale: Today and Tomorrow. Developments in Plant Breeding, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0329-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0329-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6634-1

  • Online ISBN: 978-94-009-0329-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics