Skip to main content
Log in

High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brown planthopper (Nilaparvata lugens Stål, BPH) is one of the most destructive insect pests of rice. Exploring resistance genes from diverse germplasms and incorporating them into cultivated varieties are critical for controlling this insect. The rice variety Swarnalata was reported to carry a resistance gene (designated Bph6), which has not yet been assigned to a chromosome location and the resistance mechanism is still unknown. In this study, we identified and mapped this gene using the F2 and backcrossing populations and characterized its resistance in indica 9311 and japonica Nipponbare using near isogenic lines (NILs). In analysis of 9311/Swarnalata F2 population, the Bph6 gene was located on the long arm of chromosome 4 between the SSR markers RM6997 and RM5742. The gene was further mapped precisely to a 25-kb region delimited between the STS markers Y19 and Y9; and the distance between these markers is 25-kb in Nipponbare genome. The Bph6 explained 77.5% of the phenotypic variance of BPH resistance in F2 population and 84.9% in BC2F2 population. Allele from Swarnalata significantly increased resistance to the BPH, resulted in a reduced damage score. In characterization of Bph6-mediated resistance, the BPH insects showed significant preference between NIL-9311 and 9311 in 3 h and between NIL-NIP and Nipponbare in 120 h after release. BPH growth and development were inhibited, and the insect’s survival rates were lower on Bph6-NIL plants, compared with the parents 9311 and Nipponbare. The results indicate that the Bph6 exerted prolonged antixenotic and antibiotic effects in Bph6-NIL plants, and NIL-9311 plants showed a quicker and stronger effect toward BPH than NIL-NIP plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alam SN, Cohen MB (1998) Detection and analysis of QTLs for resistance to the brown planthopper, Nilaparvata lugens, in a doubled-haploid rice population. Theor Appl Genet 97:1370–1379

    Article  CAS  Google Scholar 

  • Athwal DS, Pathak MD, Bacalangco EH, Pura CD (1971) Genetics of resistance to brown planthoppers and green leafhoppers in Oryza sativa L. Crop Sci 11:747–750

    Article  Google Scholar 

  • Bird DA, Franceschi VR, Facchini PJ (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15:2626–2635

    Article  CAS  PubMed  Google Scholar 

  • Cao YL, Ding XH, Cai M, Zhao J, Lin YJ, Li XH, Xu CG, Wang SP (2007) The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177:523–533

    Article  CAS  PubMed  Google Scholar 

  • Chen JW, Wang L, Pang XF, Pan QH (2006) Genetic analysis and fine mapping of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph19(t). Mol Genet Genomics 275:321–329

    Article  CAS  PubMed  Google Scholar 

  • Cohen MB, Alam SN, Medina EB, Bernal CC (1997) Brown planthopper, Nilaparvata lugens, resistance in rice cultivar IR64: mechanism and role in successful N. lugens management in Central Luzon, Philippines. Entomol Exp Appl 85:221–229

    Article  Google Scholar 

  • Du B, Zhang WL, Liu BF, Hu J, Wei Z, Shi ZY, He RF, Zhu LL, Chen RZ, Han B et al (2009) Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106:22163–22168

    Article  CAS  PubMed  Google Scholar 

  • Edwards OR (2001) Interspecific and intraspecific variation in the performance of three pest aphid species on five grain legume hosts. Entomol Exp Appl 100:21–30

    Article  Google Scholar 

  • Hao PY, Liu CX, Wang YY, Chen RZ, Tang M, Du B, Zhu LL, He GC (2008) Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiol 146:1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Hirabayashi H, Ogawa T (1995) RFLP mapping of Bph-1 (brown planthopper resistance gene) in rice. Breed Sci 45:369–371

    CAS  Google Scholar 

  • Hirabayashi H, Angeles ER, Kaji R, Ogawa T, Brar DS, Khush GS (1998) Identification of brown planthopper resistance gene derived from O. fficinalis using molecular markers in rice. Breed Sci 48(Suppl):82 (in Japanese)

    Google Scholar 

  • Huang Z, He GC, Shu LH, Li XH, Zhang QF (2001) Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet 102:929–934

    Article  CAS  Google Scholar 

  • Inukai T, Zeigler RS, Sarkarung S, Bronson M, Dung LV, Kinoshita T, Nelson RJ (1996) Development of pre-isogenic lines for rice blast-resistance by marker-aided selecting from inbred population. Theor Appl Genet 93:560–567

    Article  CAS  Google Scholar 

  • Jairin J, Phengrat K, Teangdeerith S, Vanavichit A, Toojinda T (2006) Mapping of a broad-spectrum brown planthopper resistance gene, Bph3, on rice chromosome 6. Mol Breed 19:35–44

    Article  Google Scholar 

  • Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2006) High resolution mapping of a new brown planthopper (BPH) resistance gene, Bph18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theor Appl Genet 112:288–297

    Article  CAS  PubMed  Google Scholar 

  • Kabir MA, Khush GS (1988) Genetic analysis of resistance to brown planthopper in rice, Oryza sativa L. Plant Breed 100:54–58

    Article  Google Scholar 

  • Kaloshian I, Kinsey MG, Ullman DE, Williamson VM (1997) The impact of Meu1-mediated resistance in tomato on longevity, fecundity and behavior of the potato aphid, Macrosiphum euphorbiae. Entomol Exp Appl 83:181–187

    Article  Google Scholar 

  • Kawaguchi M, Murata K, Ishii T, Takumi S, Mori N, Nakamura C (2001) Assignment of a brown planthopper (Nilaparvata lugens Stål) resistance gene bph4 to the rice chromosome 6. Breed Sci 51:13–18

    Article  CAS  Google Scholar 

  • Khush GS, Brar DS (1991) Genetics of resistance to insects in crop plants. Adv Agron 45:223–274

    Article  Google Scholar 

  • Khush GS, Rezaul Karim ANM, Angeles ER (1985) Genetic analysis of rice cultivar ARC 10550 to Bangladesh brown planthopper biotype. J Genet 64:121–125

    Article  Google Scholar 

  • Klingler J, Creasy R, Gao LL, Nair RM, Calix AS, Jacob HS, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Lakshminarayana A, Khush GS (1977) New genes for resistance to the brown planthopper in rice. Crop Sci 17:96–100

    Article  Google Scholar 

  • Li RB, Li LS, Wei SM, Wei YP, Chen YZ, Bai DL, Yang L, Huang FK, Lu WL, Zhang XJ et al (2006) The evaluation and utilization of new genes for brown planthopper resistance in common wild rice (Oryza rufipogon Griff.). Mol Plant Breed 4(3):365–371

    CAS  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:43–755

    Article  Google Scholar 

  • McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, Fu BY, Maghirang R, Li ZK, Xing YZ et al (2002) Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 9:199–207

    Article  CAS  PubMed  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Lin HX, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for quantitative trait locus Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  CAS  PubMed  Google Scholar 

  • Murai H, Hashimoto Z, Sharma PN, Shimizu T, Murata K, Takumi S, Mori N, Kawasaki S, Nakamura C (2001) Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene bph2. Theor Appl Genet 103:526–532

    Article  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  • Nemoto H, Ikeda R, Kaneda C (1989) New genes for resistance to brown planthopper, Nilaparvata lugens Stål, in rice. Jpn J Breed 39:23–28

    CAS  Google Scholar 

  • Normile D (2008) Reinventing rice to feed the world. Science 321:330–333

    Article  CAS  PubMed  Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199

    Article  CAS  PubMed  Google Scholar 

  • Park DS, Lee SK, Lee JH, Song MY, Song SY, Kwak DY, Yeo US, Jeon NS, Park SK, Yi G et al (2007) The identification of candidate rice genes that confer resistance to the brown planthopper (Nilaparvata lugens) through representational difference analysis. Theor Appl Genet 115:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rahman ML, Jiang WZ, Chu SH, Qiao YL, Ham TH, Woo MO, Lee J, Khanam MS, Chin JH, Jeung JU et al (2009) High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theor Appl Genet 119(7):1237–1246

    Article  PubMed  Google Scholar 

  • Ramalingam J, Vera Cruz CM, Kukreja K, Chittoor JM, Wu JL, Lee SW, Baraoidan M, George ML, Cohen MB, Hulbert SH (2003) Candidate defense genes from rice, barley, land maize and their association with qualitative and quantitative resistance in rice. Mol Plant Microbe Interact 16(1):14–24

    Article  CAS  PubMed  Google Scholar 

  • Renganayaki K, Fritz AK, Sadasivam S, Pammi S, Harrington SE, McCouch SR, Kumar SM, Reddy AS (2002) Mapping and progress toward map-based cloning of brown planthopper biotype-4 resistance gene introgressed from Oryza officinalis into cultivated rice, O. sativa. Crop Sci 42:2112–2117

    Article  CAS  Google Scholar 

  • Sun LH, Su CC, Wang CM, Zhai HQ, Wan JM (2005) Mapping of a major resistance gene to the brown planthopper in the rice cultivar Rathu Heenati. Breed Sci 55(4):391–396

    Article  CAS  Google Scholar 

  • Tanaka K, Endo S, Kazana H (2000) Toxicity of insecticides to predators of rice planthoppers: spiders, the mirid bug and the dryinid wasp. Appl Entomol Zool 35:177–187

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, The Netherlands Plant Research International, Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Kyazma BV, The Netherlands Plant Research International, Wageningen

    Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    CAS  PubMed  Google Scholar 

  • Watanabe T, Kitagawa H (2000) Photosynthesis and translocation of assimilates in rice plants following phloem feeding by planthopper Nilaparvata lugens (Homoptera: Delphacidae). J Ecol Entomol 93:1192–1198

    Article  CAS  Google Scholar 

  • Will T, Tjallingii WF, Thönnessen A, Bel A (2007) Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA 104:10536–10541

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Ren X, Weng QM, Zhu LL, He GC (2002) Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene. Hereditas 136(1):39–43

    Article  PubMed  Google Scholar 

  • Yang HY, You AQ, Yang ZF, Zhang FT, He RF, Zhu LL, He GC (2004) High-resolution genetic mapping at the Bph15 locus for brown planthopper resistance in rice (Oryza sativa L.). Theor Appl Genet 10:182–191

    Article  Google Scholar 

  • Yue B, Xue WY, Luo LJ, Xing YZ (2006) QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. J Genet Genomics 33:824–832

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 30671287), the National High Technology Research and Development Program of China (grant no. 2006AA10Z144) and the Special Fund for Public Industry from the Ministry of Agriculture of China (grant no. 200803003) and the National Major Project of Breeding for New Transgenic Organisms (grant no. 2009ZX08009-047B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcun He.

Additional information

Communicated by Y. Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (DOCX 16 kb)

Supplemental Figure S1.

Overview of the host choice test of the BPH. (a) Overview of the host choice test before the BPH treatment. (b) Observation of the BPH location in NIL-9311 and 9311 plants at 120 h in the host choice test. The labels with ‘NIL’ and ‘AA11-6-1’ denote NIL-9311 plants; the labels with ‘9311’ and ‘P15’ denote 9311 plants (TIFF 8100 kb)

Supplemental Figure S2.

High-resolution genetic map of the Bph6 gene on rice chromosome 4 and the molecular marker genotypes and phenotypes of part recombinants. (a) High-resolution genetic linkage map. The numbers below the linkage map show the genetic distances (in cM). (b) Molecular marker genotypes and phenotypes of the recombinants. The black, white and gray bars denote the marker genotypes of Swarnalata homozygotes, 9311 homozygotes and heterozygotes, respectively. C1, control 1, homozygous for Swarnalata in the target region; C2, control 2, homozygous for 9311 in the target region; 9311, the susceptible parent; Swa, the resistant parent Swarnalata. a) BPH resistance score (mean ± SD, n = 7 replicates) (TIFF 5855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Guo, J., Jing, S. et al. High-resolution mapping of the brown planthopper resistance gene Bph6 in rice and characterizing its resistance in the 9311 and Nipponbare near isogenic backgrounds. Theor Appl Genet 121, 1601–1611 (2010). https://doi.org/10.1007/s00122-010-1413-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1413-7

Keywords

Navigation