Skip to main content
Log in

Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic diversity in relation to Fusarium head blight (FHB) resistance was investigated among 295 European winter wheat cultivars and advanced breeding lines using 47 wheat SSR markers. Twelve additional wheat lines with known FHB resistance were included as reference material. At least one SSR marker per chromosome arm, including SSR markers reported in the literature with putative associations with QTLs for FHB resistance, were assayed to give an even distribution of SSR markers across the wheat genome. A total of 404 SSR alleles were detected. The number of alleles per locus ranged from 2 to 21, with an average of 8.6 alleles. The polymorphism information content of the SSR markers ranged from 0.13 (Xwmc483) to 0.87 (Xwmc607), with an average of 0.54. Cluster analysis was performed by both genetic distance-based and model-based methods. In general, the dendrogram based on unweighted pair-group method with arithmetic averages showed similar groupings to the model-based analysis. Seven clusters were identified by the model-based method, which did not strictly correspond to geographical origin. The FHB resistance level of the wheat lines was evaluated in field trials conducted over multiple years or locations by assessing the following traits: % FHB severity, % FHB incidence, % diseased kernels, in spray inoculation trials, and % FHB spread and % wilted tips, in point inoculation trials. Association analysis between SSR markers and the FHB disease traits detected markers significantly associated with FHB resistance, including some that have not been previously reported. The percentage of variance explained by each individual marker was, however, rather low. Haplotype analysis revealed that the FHB-resistant European wheat lines do not contain the 3BS locus derived from Sumai 3. The information generated in this study will assist in the selection of parental lines in order to increase the efficiency of breeding efforts for FHB resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JA, Stack RW, Lui S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  • Bai G, Guo P, Kolb FL (2003) Genetic relationships among head blight resistant cultivars of wheat assessed on the basis of molecular markers. Crop Sci 43:498–507

    CAS  Google Scholar 

  • Bai G, Kolb FL, Shaner G, Domier LL (1999) Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348

    Article  CAS  PubMed  Google Scholar 

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines form the cross Huapei 57-2/Patterson. Euphytica 131:131–136

    Article  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor Appl Genet 104:84–91

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Am J Hum Genet 19:233–257

    PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutiers S, Brulé-Babel A (2006) Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    Article  PubMed  CAS  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterházy Á, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–626

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Gervais L, Dedryver F, Morlais J-Y, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Gosman N, Bayles R, Jennings P, Kirby J, Nicholson P (2007) Evaluation and characterization of resistance to fusarium head blight caused by Fusarium culmorum in UK winter wheat cultivars. Plant Pathol 56:264–276

    Article  CAS  Google Scholar 

  • Hai L, Wagner C, Friedt W (2007) Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica 130:213–225

    Article  PubMed  CAS  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Jia G, Chen P, Qin G, Bai G, Wang X, Wang S, Zhou B, Zhang S, Liu D (2005) QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra’s’. Euphytica 146:183–191

    Article  CAS  Google Scholar 

  • Klahr A, Zimmermann G, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Lemmens M, Buerstmayr H, Ruckenbauer P (1993) Variation in Fusarium head blight susceptibility of international and Austrian wheat breeding material. Bodenkultur 44:65–78

    Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterházy Á, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    Article  PubMed  CAS  Google Scholar 

  • Li C, Zhu H, Zhang C, Lin F, Xue S, Cao Y, Zhang Z, Zhang L, Ma Z (2007) Mapping QTLs associated with Fusarium-damaged kernels in the Nanada 2419 × Wangshuibai population. Euphytica (in press). doi: 10.1007/s10681-007-9626-9

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II resistance. Theor Appl Genet 109:1504–1511

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Abate ZA, Lu H, Musket T, Davis GL, McKendry AL (2007) QTL associated with Fusarium head blight resistance in the soft red wheat Ernie. Theor Appl Genet 115:417–427

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Anderson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43:760–766

    CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice and barley revealed by fine mapping of the genomic region haboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomics 6:83–89

    Article  PubMed  CAS  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Mardi M, Buerstmayr H, Ghareyazie B, Lemmens M, Mohammadi SA, Nolz R, Ruckenbauer P (2005) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Wangshuibai’-derived population. Plant Breed 124:329–333

    Article  Google Scholar 

  • Mardi M, Pazouki L, Delavar H, Kazemi MB, Ghareyazie B, Steiner B, Nolz R, Lemmens M, Buerstmayr H (2006) QTL analysis of resistance to Fusarium head blight in wheat using a ‘Frontana’-derived population. Plant Breed 125:313–317

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Fedak G, Cao W (2004) Haplotype diversity at fusarium head blight resistance QTLs in wheat. Theor Appl Genet 109:261–271

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Klahr A, Wenzel G, Schwarz G (2002) A resistance gene analog useful for targeting disease resistance genes against pathogens on group 1S chromosomes of barley, wheat and rye. Theor Appl Genet 105:364–368

    Article  PubMed  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    Article  PubMed  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet 109:323–332

    Article  PubMed  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Prichard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixer M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D, Bertrand L, Isaac P, Rendell S, Jackson J, Cooke RJ, Vosmann B, Ganal MW (2002) Construction and analysis of a microsatellite-based database of European wheat cultivars. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi J-M (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed  CAS  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8019

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Semagn K, Skinnes H, Bjørnstad Å, Marøy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303

    Article  CAS  Google Scholar 

  • Semon M, Nielsen R, Jones MP, McCouch SR (2005) The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation. Genetics 169:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Ittu M, Ohm HW (2003a) Quantitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    CAS  Google Scholar 

  • Shen X, Zhou M, Lu W, Ohm H (2003b) Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047

    PubMed  CAS  Google Scholar 

  • Sneller C, Gioconda G, Nolan R, Gupta A, Lipps P, Herald L, Johnston A (2004) Genetics of FHB resistance in the soft red winter wheat cultivar ‘Freedom’. In: Canty SM, Boring T, Wardwell J, Ward RW (eds) Proceedings of the second international symposium on Fusarium head blight. December 11–15, 2004 Orlando, USA. Michigan State University, East Lansing, p 166

    Google Scholar 

  • Snijders CHA (1990) Fusarium head blight and mycotoxin contamination in wheat, a review. Neth J Plant Pathol 96:187–198

    Article  CAS  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  • Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224

    Article  PubMed  CAS  Google Scholar 

  • Sun G, Bond M, Nass H, Martin R, Dong Z (2003) RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor Appl Genet 106:1059–1067

    PubMed  CAS  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, IV Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  PubMed  CAS  Google Scholar 

  • Van Eeuwijk FA, Mesterhàzy A, Kilng ChI, Ruckenbauer L, Saur L, Buerstmayr H, Lemmens M, Keizer CP, Maurin N, Snijders CHA (1995) Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model of interaction. Theor Appl Genet 90:221–228

    Article  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    CAS  Google Scholar 

  • Wei Y-M, Hou Y-C, Yan Z-H, Wu W, Zhang Z-Q, Liu D-C, Zheng Y-L (2005) Microsatellite DNA polymorphism divergence in Chinese wheat (Triticum aestivum L.) landraces highly resistant to Fusarium head blight. J Appl Genet 46:3–9

    PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, pp 150–156

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yang J, Bai G, Shaner GE (2005) Novel quantitative trait loci (QTL) for fusarium head blight resistance in wheat cultivar Chokwang. Theor Appl Genet 111:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Gilbert J, Procunier JD (2006) Genetic diversity of resistance genes controlling fusarium head blight with simple sequence repeat markers in thirty-six wheat accessions from east asian origin. Euphytica 148:345–352

    Article  CAS  Google Scholar 

  • Yang ZP, Gilbert J, Somers DJ, Fedak G, Procunier JD, McKenzie IH (2003) Marker assisted selection of Fusarium head blight resistance genes in two doubled haploid populations of wheat. Mol Breed 12:309–317

    Article  CAS  Google Scholar 

  • Yu J-B, Bai G-H, Cai S-B, Ban T (2006) Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet 113:308–320

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Zhou M, Ren L, Bai G, Ma H, Scholten OE, Guo P, Lu W (2004) Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Euphytica 139:59–64

    Article  CAS  Google Scholar 

  • Zhou W, Kolb FL, Bai G, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Kolb FL, Yu J, Bai G, Boze LK, Domier LL (2004) Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome 47:1137–1143

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank J. Dermaut and L. Vandenabeele (Clovis Matton N.V., Belgium) for conducting the spray-inoculation field trials and for supplying seed, and M. Lemmens (IFA-Tulln, Austria) for advice and for supplying the Fusarium isolates. Thanks also to C. Merckaert, N. Mergan and K. Succaet for excellent technical assistance. Financial support was provided by the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Roldán-Ruiz.

Additional information

Communicated by F. Ordon.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2008_822_MOESM1_ESM.xls

MOESM1 S1. List of the 307 wheat lines, breeding companies, countries of origin, and 827 classification according to the genetic distance-based and model-based cluster analyses. (XLS 78 kb)

122_2008_822_MOESM2_ESM.pdf

MOESM2 S2. Consensus phylogenetic tree reconstructed from bootstrap analysis with 1000 replications using the majority rule setting of the Consensus program of Phylip. The unweighted pair group method with arithmetic average (UPGMA) and CS Chord genetic distance was used to investigate the genetic relationships among 307 wheat lines. Forks of the subgroups with very low bootstrap values suggest that those lines were not significantly differentiated. Wheat lines are colour coded according to country of origin: Belgium (red), Netherland (orange), Germany (dark purple), France (yellow), Great Britain (pink), Denmark (dark blue), Czech Republic (blue), Switzerland (light green), Asia (dark green), Americas (light blue). The grouping of each wheat line according to model-based cluster analysis is indicated as a number, from 1 to 7 Clusters, after the line name. (PDF 308 kb)

122_2008_822_MOESM3_ESM.pdf

MOESM3 S3. Graphic representation of the genetic structure of 307 wheat lines estimated using model-based cluster analysis implemented in Structure. The wheat lines are grouped according to country of origin, as listed in spreadsheet in S1. Coefficients of membership for each of the 7 inferred subpopulations. Each of the 7 subpopulations is indicated by a separate colour: cluster 1 = red; cluster 2 = blue; cluster 3 = green; cluster 4 = purple; cluster 5 = orange; cluster 6 = yellow; cluster 7 = brown. (PDF 85 kb)

122_2008_822_MOESM4_ESM.pdf

MOESM4 S4. Genome-wide linkage disequilibrium analysis of 295 western European wheat genotypes using 47 linked and unlinked SSR marker loci. The LD parameter r² among loci (above the diagonal) and the comparison-wise significance, P value (below the diagonal) were computed by 1000 permutations. (PDF 107 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwart, R.S., Muylle, H., Van Bockstaele, E. et al. Evaluation of genetic diversity of Fusarium head blight resistance in European winter wheat. Theor Appl Genet 117, 813–828 (2008). https://doi.org/10.1007/s00122-008-0822-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0822-3

Keywords

Navigation