Skip to main content
Log in

Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a destructive disease of wheat. The objective of this study was to characterise the FHB resistance of the Brazilian spring wheat cultivar Frontana through molecular mapping. A population of 210 doubled-haploid lines from a cross of Frontana (partially resistant) and Remus (susceptible) was evaluated for FHB resistance during three seasons. Spray and single-spikelet inoculations were applied. The severity, incidence and spread of the disease were assessed by visual scoring. The population was genotyped with 566 DNA markers. The major QTL effect associated with FHB resistance mapped to chromosome 3A near the centromere, explaining 16% of the phenotypic variation for disease severity over 3 years. The most likely position is in the Xgwm720–Xdupw227 interval. The genomic region on 3A was significantly associated with FHB severity and incidence in all years evaluated, but not with FHB spread, indicating the prominent contribution of this QTL to resistance against initial infection. The map interval Xgwm129–Xbarc197 on chromosome 5A also showed consistent association with FHB severity and accounted for 9% of the phenotypic variation. In addition, smaller effects for FHB severity were identified on chromosomes 1B, 2A, 2B, 4B, 5A and 6B in single years. Individual QTLs for resistance to FHB spread accounted for less than 10% of the variation in trait expression. The present study indicates that FHB resistance of Frontana primarily inhibits fungal penetration (type I resistance), but has a minor effect on fungal spread after infection (type II resistance).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson JA, Stack RW, Liu S, Waldron BL, Fjeld AD, Coyne C, Moreno-Sevilla B, Mitchell Fetch J, Song QJ, Cregan PB, Frohberg RC (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    CAS  Google Scholar 

  • Arthur JC (1891) Wheat scab. Indiana Agric Exp St Bull 36:129–132

    Google Scholar 

  • Bourdoncle W, Ohm HW (2003) Quantitative trait loci for resistance to Fusarium head blight in recombinant inbred wheat lines from the cross Huapei 57-2/Patterson. Euphytica 131:131–136

    Article  CAS  Google Scholar 

  • Buerstmayr H, Lemmens M, Grausgruber H, Ruckenbauer P (1996) Scab resistance of international wheat germplasm. Cereal Res Commun 24:195–202

    Google Scholar 

  • Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P (2000) Resistance to Fusarium head blight in two winter wheat crosses: heritability and trait associations. Crop Sci 40:1012–1018

    Google Scholar 

  • Buerstmayr H, Lemmens M, Hartl L, Doldi L, Steiner B, Stierschneider M, Ruckenbauer P (2002) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor Appl Genet 104:84–91

    CAS  Google Scholar 

  • Buerstmayr H, Steiner B, Hartl L, Griesser M, Angerer N, Lengauer D, Miedaner T, Schneider B, Lemmens M (2003) Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor Appl Genet 107:503–508

    Article  CAS  PubMed  Google Scholar 

  • De La Pena RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Macky R, Somers DA, Rasmusson DC (1999) Quantitative trait loci association with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    Article  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genome of wheat. Theor Appl Genet 104:399–407

    CAS  Google Scholar 

  • Gervais L, Dedryver F, Morlais JY, Bodusseau V, Negre S, Bilous M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor Appl Genet 106:961–970

    CAS  PubMed  Google Scholar 

  • Groth JV, Ozmon EA, Busch RH (1999) Repeatability and relationship of incidence and severity measures of scab of wheat caused by Fusarium graminearum in inoculated nurseries. Plant Dis 83:1033–1038

    Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat. Genome 42:322–329

    Article  CAS  Google Scholar 

  • Hilton AJ, Jenkinson P, Hollins TW, Parry DW (1999) Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol 48:202–208

    Article  Google Scholar 

  • Hoisington D, Khairallah M, Gonzalez-de-Leon D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, Mexico City

    Google Scholar 

  • Kolb FL, Bai GH, Muehlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host and plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers. Crop Sci: 41:611–619

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76:393–397

    Google Scholar 

  • Ma Z, Steffenson BJ, Prom LK, Lapitan NLV (2000) Mapping of quantitative trait loci for Fusarium head blight resistance in barley. Phytopathology 90:1079–1088

    CAS  Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proc 9th Int wheat Genet Symp, vol 5. University Extension Press, Saskatchewan

  • Mesfin A, Smith KP, Dill-Macky R, Evans CK, Waugh R, Gustus CD, Muehlbauer GJ (2003) Quantitative trait loci for Fusarium head blight resistance in barley detected in a two-rowed by six-rowed population. Crop Sci 43:307–318

    CAS  Google Scholar 

  • Mesterhazy A (1995) Types and components of resistance to Fusarium head blight of wheat. Plant Breed 114:377–386

    Google Scholar 

  • Miller JD, Arnison PG (1986) Degradation of deoxynivalenol by suspension cultures of the Fusarium head blight resistant wheat cultivar Frontana. Can J Plant Pathol 8:147–150

    CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    Article  CAS  PubMed  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Google Scholar 

  • Pestova E, Ganal MW, Roeder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Roeder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rudd JC, Horsley RD, McKendry AL, Elias EM (2001) Host plant resistance genes for Fusarium head blight: sources, mechanisms and utility in conventional breeding systems. Crop Sci 41:620–627

    Google Scholar 

  • SAS Institute (1989) SAS/STAT user’s guide, ver. 8.02. SAS Institute, Cary, N.C.

  • Schroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838

    Google Scholar 

  • Shen X, Zhou M, Lu W, Ohm H (2003a) Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor Appl Genet 106:1041–1047

    CAS  PubMed  Google Scholar 

  • Shen X, Ittu M, Ohm H (2003b) Quatitative trait loci conditioning resistance to Fusarium head blight in wheat line F201R. Crop Sci 43:850–857

    CAS  Google Scholar 

  • Shi JR, Song QJ, Singh S, Ward RW, Cregan PB, Gill BS (2002) Microsatellite genetic map in wheat. (National Fusarium head blight forum, 7–9 Dec. 2002) USDA, Cincinnati http://wheat.pw.usda.gov/ggpages/genomics.shtml

  • Singh RP, Ma H, Rajaram S (1995) Genetic analysis of resistance to scab in spring wheat cultivar Frontana. Plant Dis 79:238–240

    Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Agric Genomics http://www.ncgr.org/research/jag/papers96/paper196/indexp196.html

  • Van Eeuwijk FA, Mesterhazy A, Kling CI, Ruckenbauer P, Saur L, Buerstmayr H, Lemmens M, Keizer LCP, Maurin N, Snijders CHA (1995) Assessing non-specificity of resistance in wheat to head blight caused by inoculation with European strains of Fusarium culmorum, F. graminearum and F. nivale using a multiplicative model for interaction. Theor Appl Genet 90:221–228

    Google Scholar 

  • Van Ginkel M, Van Der Schaar W, Zhuping Y, Rajaram S (1996) Inheritance of resistance to scab in two wheat cultivars from Brazil and China. Plant Dis 80:863–867

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Horens M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    CAS  Google Scholar 

  • Wang YZ, Miller JD (1988) Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. J Phytopathol 122:118–125

    CAS  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Shaner G, Domier LL (2002) Genetic analysis of scab resistance QTL in wheat with microsatellite and AFLP markers. Genome 45:719–727

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kundra D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Roeder (IPK Gatersleben, Germany) for screening SSR markers and P. Cregan and Q. Song (USDA ARS, Beltsville, USA) for supplying unpublished ‘BARC’ SSR primers. The excellent technical assistance of M. Stierschneider and M. Fidesser (IFA-Tulln, Austria) is gratefully acknowledged. We thank M. Skrzypczak (Winnipeg, Canada) and B. Hackauf (Gross Luesewitz, Germany) for providing PCR protocols for ‘M13-tailed’ primers and thank B.S. Gill (Kansas State University, USA) and M.E. Sorrells (Cornell University, USA) for allowing us the use of their RFLP clones. We are also grateful to H. Toubia-Rahme (IFA-Tulln, Austria) and D. Mather (McGill University, Canada) for their suggestions to improve the manuscript. This work was supported by the Austrian Federal Ministry for Education, Science and Culture project GZ 309.006/3-VIII/B/8/2000 and by the EU-funded FUCOMYR project, contract QLRT-2001–02044: ‘Novel tools for developing Fusarium-resistant and toxin-free wheat for Europe’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Buerstmayr.

Additional information

Communicated by H.C. Becker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, B., Lemmens, M., Griesser, M. et al. Molecular mapping of resistance to Fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109, 215–224 (2004). https://doi.org/10.1007/s00122-004-1620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1620-1

Keywords

Navigation