Skip to main content
Log in

Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Association mapping in populations relevant for wheat breeding has a large potential for validating and fine-mapping QTLs identified in F2- or DH (double haploid)-derived populations. In this study, associations between markers in the region of QSng.sfr-3BS, a major QTL for resistance to Stagonospora nodorum glume blotch (SNG), and SNG resistance were investigated by linkage and association analyses. After increasing marker density in 240 F5:7 recombinant inbred lines (RILs), QSng.sfr-3BS explained 43% of the genetic variance and peaked 0.6 cM proximal from the marker SUN2-3B. Association between SNG resistance and markers mapped in the region of QSng.sfr-3BS was investigated in a population of 44 modern European winter wheat varieties. Two genetically distinct subpopulations were identified within these lines. In agreement with linkage analyses, association mapping by a least squares general linear model (GLM) at marker loci in the region of QSng.sfr-3BS revealed the highest association with SNG resistance for SUN2-3B (p < 0.05). Association mapping can provide an effective mean of relating genotypes to complex quantitative phenotypes in hexaploid wheat. Linkage disequilibrium (r 2) in chromosome 3B extended less than 0.5 cM in 44 varieties, while it extended about 30 cM in 240 RILs, based on 91 SSR and STS marker-pair comparisons. This indicated that the association mapping population had a marker resolution potential at least 390-fold higher compared to the RIL population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Blair MA, Garris A, Iyer A, Chapman B, Kresovich S et al (2003) High resolution genetic mapping and candidate gene identification at the xa5 locus for bacterial blight resistance in rice (Oryza sativa L.). Theor Appl Genet 107:62–73

    Article  PubMed  CAS  Google Scholar 

  • Botswick ED, Ohm HM, Shaner G (1993) Inheritance of Septoria glume blotch resistance in wheat. Crop Sci 33:439–443

    Article  Google Scholar 

  • Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brönnimann A (1968) Zur Kenntnis von Septoria nodorum Berk., dem Erreger der Spelzenbräune und einer Blattdürre des Weizens. J Phytopathol 61:101–146

    Google Scholar 

  • Brönnimann A, Fossati A, Hani F (1973) Spreading of Septoria nodorum (Berk) and damage to artificially induced mutants of winter wheat cultivar Zenith (Triticum aestivum). Plant Breed 70:230–245

    Google Scholar 

  • Ching A, Caldwell KS, Jung M, Dolan M, Smith OS et al (2002) SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet 3:19

    Article  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Chunwongse J, Doganlar S, Crossman C, Jiang J, Tanksley SD (1997) High-resolution genetic map of the Lv resistance locus in tomato. Theor Appl Genet 95:220–223

    Article  CAS  Google Scholar 

  • Duczek LJ, Sutherland KA, Reed SL, Bailey KL, Lanford GP (1999) Survival of leaf spot pathogens on crop residues of wheat and barley in Saskatchewan. Can J Plant Pathol 21:165–173

    Article  Google Scholar 

  • Farnir F, Coppieters W, Arranz J-J, Berzi P, Cambisano N et al (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  PubMed  CAS  Google Scholar 

  • Fried PM, Meister E (1987) Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in diallel cross. Phytopathology 77:1371–1375

    Google Scholar 

  • Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effects on haplotype diversity and linkage disequilibrium surrounding the a5 locus of rice Oryza sativa L. Genetics 165:759–769

    PubMed  Google Scholar 

  • Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Shueler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102

    Article  CAS  Google Scholar 

  • Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomic. Nat Rev Genet 4:937–947

    Article  PubMed  CAS  Google Scholar 

  • Hagenblad J, Tang C, Molitor J, Werner J, Zhao K et al (2004) Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168:1627–1638

    Article  PubMed  CAS  Google Scholar 

  • Halama P (2002) Mating relationships between isolates of Phaeosphaeria nodorum (anamorph Stagonospora nodorum) from geographical locations. Eur J Plant Pathol 108:593–596

    Article  Google Scholar 

  • Huang Q, Borner A, Roder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR (2001) Linkage disequilibrium and recombination. In: Balding D, Bishop M, Cannings C (eds) Handbook of statistical genetics. Wiley, New York, pp 309–324

    Google Scholar 

  • Igartua E, Casas AM, Ciudad F, Montoya JL, Romagosa I (1999) RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity 83:551–559

    Article  PubMed  Google Scholar 

  • Ivandic V, Hackett CA, Nevo E, Keith R, Thomas WTB et al (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol Biol 48:511–527

    Article  PubMed  CAS  Google Scholar 

  • Ivandic V, Thomas WTB, Nevo E, Zhang Z, Forster BP (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304

    Article  CAS  Google Scholar 

  • Keller SM, McDermott JM, Pettway RE, Keller SM, McDermott JM, Pettway RE et al (1997) Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (Anamorph Stagonospora nodorum). Phytopathology 87:353–358

    Article  CAS  PubMed  Google Scholar 

  • Kilpikari R, Sillanpää MJ (2003) Bayesian analysis of multilocus association in quantitative and qualitative traits. Genet Epidemiol 25:122–135

    Article  PubMed  Google Scholar 

  • Kraakman ATW, Rients EN, Petra MM, Van den Berg M, Stam P et al (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P et al (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Pakniyat H, Powell W, Baird E, Handley LL, Robinson D et al (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40:332–341

    Article  CAS  PubMed  Google Scholar 

  • Palaisa KA, Morgante M, Williams M, Rafalski A (2003) Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK (2000) The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet 100:584–592

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G (2006) Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet 112:738–743

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Wendehake K, Korzun V, Bredemeijer G, Laborie D et al (2002) Construction and analysis of a microsatellite-based database of European wheat varieties. Theor Appl Genet 106:67–73

    PubMed  Google Scholar 

  • Rosenberg NA, Li LM, Ward R, Pritchard JK (2003) Informativeness of genetic markers for inference of ancestry. Am J Hum Genet 73:1402–1422

    Article  PubMed  CAS  Google Scholar 

  • Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G et al (2003) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Scott PR, Benedikz PW, Cox CJ (1982) A genetic-study of the relationship between height, time of ear emergence and resistance to Septoria nodorum in wheat. Plant Pathol 31:45–60

    Article  Google Scholar 

  • Searle SR (1987) Linear models for unbalanced data. Wiley, New York

    Google Scholar 

  • Shaner G, Finney RE (1997) The effect of nitrogen fertilisation on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Google Scholar 

  • Shaner G (1999) Breeding for resistance to septoria and stagonospora blotches in winter wheat in the United States. In: van Ginkel M, McNab A, Krupinsky J (eds) Septoria and Stagonospora diseases of cereals: a compilation of global research. Proceedings of the fifth international septoria workshop, CYMMIT, Mexico

  • Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M (1994) Genetic diversity in European wheat and spelt breeding material based on RFLP data. Theor Appl Genet 88:994–1003

    Article  Google Scholar 

  • Simko I, Costanzo S, Haynes KG, Christ BJ, Jones RW (2004) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224

    Article  PubMed  CAS  Google Scholar 

  • Stachel M, Lelley T, Grausgruber H, Vollmann J (2000) Application of microsatellites in wheat (Triticum aestivum L.) for studying genetic differentiation caused by selection for adaptation and use. Theor Appl Genet 100:242–248

    Article  Google Scholar 

  • Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D et al (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • van Ginkel M, Rajaram S (1999) Breeding for resistance to the Septoria/stagonospora blights of wheat. In: van Ginkel M, McNab A, Krupinsky JM (eds) Septoria and stagonospora diseases of cereals: a compilation of global research. CYMMIT, Mexico, pp 117–126

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Methods for discrete population genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Wicki W, Winzeler M, Schmid JE, Stamp P, Messmer MM (1999) Inheritance of resistance to leaf and glume blotch caused by Septoria nodorum Berk. In winter wheat. Theor Appl Genet 99:1265–1272

    Article  Google Scholar 

  • Wilson LM, Whitt SR, Ibanez AM, Rocheford TR, Goodman MM et al (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen D M, Holland JB, Kresovich S, Buckler ES (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Flavio Breseghello for helpful comments on the manuscript, and to Prof. Clay Sneller, Dr. Peter Morrell, Dr. Gael Pressoir, Dr. Edward Buckler, Dr. Jianming Yu for suggestions on statistical analyses. This work was supported by the Swiss National Science Foundation for Scientific Research (Grant No. 105620) and by the University of Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Keller.

Additional information

Communicated by M. Sillanpää.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (ppt 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommasini, L., Schnurbusch, T., Fossati, D. et al. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115, 697–708 (2007). https://doi.org/10.1007/s00122-007-0601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0601-6

Keywords

Navigation