Skip to main content
Log in

Probing natural SUSY from stop pair production at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with \( \sqrt{s}=14 \) TeV and 100 fb−1 luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  2. CMS collaboration, Observation of a new boson with a mass near 125 GeV, CMS-PAS-HIG-12-020 (2012).

  3. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  5. ATLAS collaboration, G. Aad et al., Search for new phenomena in tt events with large missing transverse momentum in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].

    Article  ADS  Google Scholar 

  6. ATLAS collaboration, G. Aad et al., Search for supersymmetry in pp collisions at \( \sqrt{s}=7 \) TeV in final states with missing transverse momentum and b jets with the ATLAS detector, Phys. Rev. D 85 (2012) 112006 [arXiv:1203.6193] [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, G. Aad et al., Search for gluinos in events with two same-sign leptons, jets and missing transverse momentum with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 241802 [arXiv:1203.5763] [INSPIRE].

    Article  ADS  Google Scholar 

  8. ATLAS collaboration, G. Aad et al., Search for scalar bottom pair production with the ATLAS detector in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 181802 [arXiv:1112.3832] [INSPIRE].

    Article  ADS  Google Scholar 

  9. D0 collaboration, V.M. Abazov et al., Search for pair production of the scalar top quark in muon + tau final states, Phys. Lett. B 710 (2012) 578 [arXiv:1202.1978] [INSPIRE].

    ADS  Google Scholar 

  10. D0 collaboration, V.M. Abazov et al., Search for pair production of the scalar top quark in the electron + muon final state, Phys. Lett. B 696 (2011) 321 [arXiv:1009.5950] [INSPIRE].

    ADS  Google Scholar 

  11. CDF collaboration, T. Aaltonen et al., Search for production of heavy particles decaying to top quarks and invisible particles in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 106 (2011) 191801 [arXiv:1103.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  12. CDF collaboration, T. Aaltonen et al., Search for new Tparticles in final states with large jet multiplicities and missing transverse energy in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 107 (2011) 191803 [arXiv:1107.3574] [INSPIRE].

    Article  ADS  Google Scholar 

  13. CMS collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  14. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  15. M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  17. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  18. L. Aparicio, D.G. Cerdeno and L.E. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    ADS  Google Scholar 

  20. C. Balázs, A. Buckley, D. Carter, B. Farmer and M. White, Should we still believe in constrained supersymmetry?, arXiv:1205.1568 [INSPIRE].

  21. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D 86 (2012) 075010 [arXiv:1206.0264] [INSPIRE].

    ADS  Google Scholar 

  22. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  23. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].

    ADS  Google Scholar 

  25. U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, Adv. High Energy Phys. 2012 (2012) 625389 [arXiv:1203.5048] [INSPIRE].

    Google Scholar 

  26. D.A. Vasquez et al., The 125 GeV Higgs in the NMSSM in light of LHC results and astrophysics constraints, Phys. Rev. D 86 (2012) 035023 [arXiv:1203.3446] [INSPIRE].

    ADS  Google Scholar 

  27. R.L. Arnowitt and P. Nath, Loop corrections to radiative breaking of electroweak symmetry in supersymmetry, Phys. Rev. D 46 (1992) 3981 [INSPIRE].

  28. S.F. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Huet and A.E. Nelson, Electroweak baryogenesis in supersymmetric models, Phys. Rev. D 53 (1996) 4578 [hep-ph/9506477] [INSPIRE].

    ADS  Google Scholar 

  30. M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [INSPIRE].

    Article  ADS  Google Scholar 

  31. Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [INSPIRE].

    ADS  Google Scholar 

  32. K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].

    ADS  Google Scholar 

  33. C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].

    ADS  Google Scholar 

  34. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  35. D. Feldman, G. Kane, E. Kuflik and R. Lu, A new (string motivated) approach to the little hierarchy problem, Phys. Lett. B 704 (2011) 56 [arXiv:1105.3765] [INSPIRE].

    ADS  Google Scholar 

  36. H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A.G. Cohen, D.B. Kaplan and A. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  38. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].

    ADS  Google Scholar 

  39. J.L. Feng and D. Sanford, A natural 125 GeV Higgs boson in the MSSM from focus point supersymmetry with a-terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].

    ADS  Google Scholar 

  40. G. Bhattacharyya and T.S. Ray, Naturally split supersymmetry, JHEP 05 (2012) 022 [arXiv:1201.1131] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Krippendorf, H.P. Nilles, M. Ratz and M.W. Winkler, The heterotic string yields natural supersymmetry, Phys. Lett. B 712 (2012) 87 [arXiv:1201.4857] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. B.C. Allanach and B. Gripaios, Hide and seek with natural supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].

    ADS  Google Scholar 

  44. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  47. J. Hisano, K. Kurosawa and Y. Nomura, Natural effective supersymmetry, Nucl. Phys. B 584 (2000) 3 [hep-ph/0002286] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  49. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].

    ADS  Google Scholar 

  50. G.W. Anderson, D.J. Castano and A. Riotto, Naturalness lowers the upper bound on the lightest Higgs boson mass in supersymmetry, Phys. Rev. D 55 (1997) 2950 [hep-ph/9609463] [INSPIRE].

    ADS  Google Scholar 

  51. H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  53. A. Choudhury and A. Datta, Many faces of low mass neutralino dark matter in the unconstrained MSSM, LHC data and new signals, JHEP 06 (2012) 006 [arXiv:1203.4106] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K. Huitu, L. Leinonen and J. Laamanen, Stop as a next-to-lightest supersymmetric particle in constrained MSSM, Phys. Rev. D 84 (2011) 075021 [arXiv:1107.2128] [INSPIRE].

    ADS  Google Scholar 

  55. Y. Kats and D. Shih, Light stop NLSPs at the Tevatron and LHC, JHEP 08 (2011) 049 [arXiv:1106.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light stop searches at the LHC in events with two b-jets and missing energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].

    ADS  Google Scholar 

  57. N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].

    ADS  Google Scholar 

  58. D. Casadei, R. Konoplich and R. Djilkibaev, Reconstruction of stop quark mass at the LHC, Phys. Rev. D 82 (2010) 075011 [arXiv:1006.5875] [INSPIRE].

    ADS  Google Scholar 

  59. K. Rolbiecki, J. Tattersall and G. Moortgat-Pick, Towards measuring the stop mixing angle at the LHC, Eur. Phys. J. C 71 (2011) 1517 [arXiv:0909.3196] [INSPIRE].

    ADS  Google Scholar 

  60. M. Perelstein and A. Weiler, Polarized tops from stop decays at the LHC, JHEP 03 (2009) 141 [arXiv:0811.1024] [INSPIRE].

    Article  ADS  Google Scholar 

  61. T. Han, R. Mahbubani, D.G.E. Walker and L.-T. Wang, Top quark pair plus large missing energy at the LHC, JHEP 05 (2009) 117 [arXiv:0803.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  62. M. Carena, A. Freitas and C.E.M. Wagner, Light stop searches at the LHC in events with one hard photon or jet and missing energy, JHEP 10 (2008) 109 [arXiv:0808.2298] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Kraml and A.R. Raklev, Same-sign top quarks as signature of light stops at the LHC, Phys. Rev. D 73 (2006) 075002 [hep-ph/0512284] [INSPIRE].

    ADS  Google Scholar 

  64. T. Han, K.-i. Hikasa, J.M. Yang and X.-m. Zhang, The FCNC top squark decay as a probe of squark mixing, Phys. Rev. D 70 (2004) 055001 [hep-ph/0312129] [INSPIRE].

    ADS  Google Scholar 

  65. A. Bartl, S. Hesselbach, K. Hidaka, T. Kernreiter and W. Porod, Impact of CP phases on stop and sbottom searches, Phys. Lett. B 573 (2003) 153 [hep-ph/0307317] [INSPIRE].

    ADS  Google Scholar 

  66. J. Hisano, K. Kawagoe and M.M. Nojiri, A detailed study of the gluino decay into the third generation squarks at the CERN LHC, Phys. Rev. D 68 (2003) 035007 [hep-ph/0304214] [INSPIRE].

    ADS  Google Scholar 

  67. J. Hisano, K. Kawagoe, R. Kitano and M.M. Nojiri, Scenery from the top: study of the third generation squarks at CERN LHC, Phys. Rev. D 66 (2002) 115004 [hep-ph/0204078] [INSPIRE].

    ADS  Google Scholar 

  68. J.M. Yang and B.-L. Young, Searching for a stop pair sample from top counting experiments at hadron colliders, Phys. Rev. D 62 (2000) 115002 [hep-ph/0007165] [INSPIRE].

    ADS  Google Scholar 

  69. D.E. Kaplan, K. Rehermann and D. Stolarski, Searching for direct stop production in hadronic top data at the LHC, JHEP 07 (2012) 119 [arXiv:1205.5816] [INSPIRE].

    Article  ADS  Google Scholar 

  70. T. Plehn, M. Spannowsky and M. Takeuchi, Stop searches in 2012, JHEP 08 (2012) 091 [arXiv:1205.2696] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Plehn, M. Spannowsky and M. Takeuchi, Boosted semileptonic tops in stop decays, JHEP 05 (2011) 135 [arXiv:1102.0557] [INSPIRE].

    Article  ADS  Google Scholar 

  72. T. Plehn and M. Spannowsky, Top tagging, J. Phys. G 39 (2012) 083001 [arXiv:1112.4441] [INSPIRE].

    ADS  Google Scholar 

  73. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

    Article  ADS  Google Scholar 

  74. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N-subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  76. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  78. K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  80. L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].

    ADS  Google Scholar 

  81. L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [INSPIRE].

    ADS  Google Scholar 

  82. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    Article  ADS  Google Scholar 

  83. Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the top background of the stop search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].

    Article  ADS  Google Scholar 

  84. Z. Han, A. Katz, D. Krohn and M. Reece, (Light) stop signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].

    ADS  Google Scholar 

  86. D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and MET: the shape of things to come, arXiv:1205.5805 [INSPIRE].

  87. C. Brust, A. Katz and R. Sundrum, SUSY stops at a bump, JHEP 08 (2012) 059 [arXiv:1206.2353] [INSPIRE].

    Article  ADS  Google Scholar 

  88. H.-T. Wei et al., Probe R-parity violating stop resonance at the LHeC, JHEP 07 (2011) 003 [arXiv:1107.4461] [INSPIRE].

    Article  ADS  Google Scholar 

  89. N. Desai and B. Mukhopadhyaya, R-parity violating resonant stop production at the Large Hadron Collider, JHEP 10 (2010) 060 [arXiv:1002.2339] [INSPIRE].

    Article  ADS  Google Scholar 

  90. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing light stop pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].

    ADS  Google Scholar 

  91. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  92. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  93. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  94. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  95. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  96. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. K. Ishiwata, N. Nagata and N. Yokozaki, Natural supersymmetry and bsγ constraints, Phys. Lett. B 710 (2012) 145 [arXiv:1112.1944] [INSPIRE].

    ADS  Google Scholar 

  98. J. Rosiek, P. Chankowski, A. Dedes, S. Jager and P. Tanedo, SUSY FLAVOR: a computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 181 (2010) 2180 [arXiv:1003.4260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  99. A. Crivellin, L. Hofer and J. Rosiek, Complete resummation of chirally-enhanced loop-effects in the MSSM with non-minimal sources of flavor-violation, JHEP 07 (2011) 017 [arXiv:1103.4272] [INSPIRE].

    Article  ADS  Google Scholar 

  100. J. Cao and J.M. Yang, Anomaly of \( Zb\overline{b} \) coupling revisited in MSSM and NMSSM, JHEP 12 (2008) 006 [arXiv:0810.0751] [INSPIRE].

    Article  ADS  Google Scholar 

  101. WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [INSPIRE].

    Article  ADS  Google Scholar 

  102. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  103. M.S. Carena, S. Heinemeyer, C. Wagner and G. Weiglein, Suggestions for benchmark scenarios for MSSM Higgs boson searches at hadron colliders, Eur. Phys. J. C 26 (2003) 601 [hep-ph/0202167] [INSPIRE].

    Article  ADS  Google Scholar 

  104. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: a comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    ADS  Google Scholar 

  105. M. Carena, S. Gori, N.R. Shah, C.E.M. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  106. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].

    ADS  Google Scholar 

  107. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    ADS  Google Scholar 

  108. A. Djouadi, Top squark effects on Higgs boson production and decays at the LHC, hep-ph/9901237 [INSPIRE].

  109. W. Beenakker, M. Krämer, T. Plehn, M. Spira and P. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].

    Article  ADS  Google Scholar 

  110. J. Pumplin, A. Belyaev, J. Huston, D. Stump and W. Tung, Parton distributions and the strong coupling: CTEQ6AB PDFs, JHEP 02 (2006) 032 [hep-ph/0512167] [INSPIRE].

    Article  ADS  Google Scholar 

  111. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  112. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  113. V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Precision predictions for the t + t production cross section at hadron colliders, Phys. Lett. B 703 (2011) 135 [arXiv:1105.5824] [INSPIRE].

    ADS  Google Scholar 

  114. M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].

    ADS  Google Scholar 

  115. S. Moch, P. Uwer and A. Vogt, On top-pair hadro-production at next-to-next-to-leading order, Phys. Lett. B 714 (2012) 48 [arXiv:1203.6282] [INSPIRE].

    ADS  Google Scholar 

  116. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  117. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  118. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  119. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  120. F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multijet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [INSPIRE].

    Article  ADS  Google Scholar 

  121. ATLAS collaboration, G. Aad et al., Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions using 4.7 fb −1 of ATLAS data, arXiv:1208.2590 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Han, C., Wu, L. et al. Probing natural SUSY from stop pair production at the LHC. J. High Energ. Phys. 2012, 39 (2012). https://doi.org/10.1007/JHEP11(2012)039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)039

Keywords

Navigation