Skip to main content
Log in

A natural SUSY Higgs near 125 GeV

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The naturalness of a Higgs boson with a mass near 125 GeV is explored in a variety of weak-scale supersymmetric models. A Higgs mass of this size strongly points towards a non-minimal implementation of supersymmetry. The Minimal Supersymmetric Standard Model now requires large A-terms to avoid multi-TeV stops. The fine-tuning is at least 1 % for low messenger scales, and an order of magnitude worse for high messenger scales. Naturalness is significantly improved in theories with a singlet superfield S coupled to the Higgs superfields via λSH u H d. If λ is perturbative up to unified scales, a fine-tuning of about 10 % is possible with a low mediation scale. Larger values of λ, implying new strong interactions below unified scales, allow for a highly natural 125 GeV Higgs boson over a wide range of parameters. Even for λ as large as 2, where a heavier Higgs might be expected, a light Higgs boson naturally results from singlet-doublet scalar mixing. Although the Higgs is light, naturalness allows for stops as heavy as 1.5 TeV and a gluino as heavy as 3 TeV. Non-decoupling effects among the Higgs doublets can significantly suppress the coupling of the light Higgs to b quarks in theories with a large λ, enhancing the γγ and W W signal rates at the LHC by an order one factor relative to the Standard Model Higgs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gianotti, Update on the Standard Model Higgs searches in ATLAS, CERN public seminar, December 2011.

  2. G. Tonelli, Update on the Standard Model Higgs searches in CMS, CERN public seminar, December 2011.

  3. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  4. LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

    ADS  Google Scholar 

  5. R. Barbieri and G. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Barbieri and A. Strumia, TheLEP paradox’, hep-ph/0007265 [INSPIRE].

  7. B. de Carlos and J. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [INSPIRE].

    ADS  Google Scholar 

  8. P.H. Chankowski, J.R. Ellis and S. Pokorski, The Fine tuning price of LEP, Phys. Lett. B 423 (1998)327 [hep-ph/9712234] [INSPIRE].

    ADS  Google Scholar 

  9. R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    ADS  Google Scholar 

  10. G.L. Kane and S. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].

    ADS  Google Scholar 

  11. L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Z. Chacko, Y. Nomura and D. Tucker-Smith, A Minimally fine-tuned supersymmetric standard model, Nucl. Phys. B 725 (2005) 207 [hep-ph/0504095] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Choi, K.S. Jeong, T. Kobayashi and K.-i. Okumura, Little SUSY hierarchy in mixed modulus-anomaly mediation, Phys. Lett. B 633 (2006) 355 [hep-ph/0508029] [INSPIRE].

    ADS  Google Scholar 

  14. R. Kitano and Y. Nomura, A Solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    ADS  Google Scholar 

  15. P. Athron and . Miller, D.J., A New Measure of Fine Tuning, Phys. Rev. D 76 (2007) 075010 [arXiv:0705.2241] [INSPIRE].

    ADS  Google Scholar 

  16. S. Cassel, D. Ghilencea and G. Ross, Fine tuning as an indication of physics beyond the MSSM, Nucl. Phys. B 825 (2010) 203 [arXiv:0903.1115] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Barbieri and D. Pappadopulo, S-particles at their naturalness limits, JHEP 10 (2009) 061 [arXiv:0906.4546] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural Supersymmetry at the LHC, JHEP 12 (2010)019 [arXiv:1010.0692] [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  20. R. Essig, Implications of the LEP Higgs Bounds for the MSSM Stop Sector, Phys. Rev. D 75 (2007)095005 [hep-ph/0702104] [INSPIRE].

    ADS  Google Scholar 

  21. M. Perelstein and C. Spethmann, A Collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [INSPIRE].

    Article  ADS  Google Scholar 

  22. R. Essig and J.-F. Fortin, The Minimally Tuned Minimal Supersymmetric Standard Model, JHEP 04 (2008) 073 [arXiv:0709.0980] [INSPIRE].

    Article  Google Scholar 

  23. R. Dermisek and I. Low, Probing the Stop Sector and the Sanity of the MSSM with the Higgs Boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].

    ADS  Google Scholar 

  24. I. Low and S. Shalgar, Implications of the Higgs Discovery in the MSSM Golden Region, JHEP 04 (2009) 091 [arXiv:0901.0266] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000)76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  28. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, arXiv:1110.6926 [INSPIRE].

  31. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  32. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy Flavor Simplified Models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  33. Y. Kats, P. Meade, M. Reece and D. Shih, The Status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  34. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

    ADS  Google Scholar 

  36. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The Minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  37. S. Chang, C. Kilic and R. Mahbubani, The New fat Higgs: Slimmer and more attractive, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267] [INSPIRE].

    ADS  Google Scholar 

  38. A. Birkedal, Z. Chacko and Y. Nomura, Relaxing the upper bound on the mass of the lightest supersymmetric Higgs boson, Phys. Rev. D 71 (2005) 015006 [hep-ph/0408329] [INSPIRE].

    ADS  Google Scholar 

  39. A. Delgado and T.M. Tait, A Fat Higgs with a Fat top, JHEP 07 (2005) 023 [hep-ph/0504224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. N. Craig, D. Stolarski and J. Thaler, A Fat Higgs with a Magnetic Personality, JHEP 11 (2011)145 [arXiv:1106.2164] [INSPIRE].

    Article  ADS  Google Scholar 

  41. C. Csáki, Y. Shirman and J. Terning, A Seiberg Dual for the MSSM: Partially Composite W and Z, Phys. Rev. D 84 (2011) 095011 [arXiv:1106.3074] [INSPIRE].

    ADS  Google Scholar 

  42. ATLAS collaboration, Combined Standard Model Higgs boson searches with up to 2.3 fb-1 of pp collisions at \( \sqrt {s} = 7\;TeV \) at the LHC, ATLAS-CONF-2011-157 (2011).

  43. P. Batra, A. Delgado, D.E. Kaplan and T.M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 02 (2004) 043 [hep-ph/0309149] [INSPIRE].

    Article  ADS  Google Scholar 

  44. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006)034 [hep-ph/0409127] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. Y. Nomura, D. Poland and B. Tweedie, μB - driven electroweak symmetry breaking, Phys. B 633 (2006) 573 [hep-ph/0509244] [INSPIRE].

    ADS  Google Scholar 

  46. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  47. L. Cavicchia, R. Franceschini and V.S. Rychkov, Supersymmetry without a light Higgs boson at the CERN LHC, Phys. Rev. D 77 (2008) 055006 [arXiv:0710.5750] [INSPIRE].

    ADS  Google Scholar 

  48. J. Cao and J.M. Yang, Current experimental constraints on NMSSM with large lambda, Phys. Rev. D 78 (2008) 115001 [arXiv:0810.0989] [INSPIRE].

    ADS  Google Scholar 

  49. P. Lodone, Naturalness bounds in extensions of the MSSM without a light Higgs boson, JHEP 05 (2010) 068 [arXiv:1004.1271] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. Franceschini and S. Gori, Solving the μ problem with a heavy Higgs boson, JHEP 05 (2011)084 [arXiv:1005.1070] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Carena, P. Draper, T. Liu and C. Wagner, The 7 TeV LHC Reach for MSSM Higgs Bosons, Phys. Rev. D 84 (2011) 095010 [arXiv:1107.4354] [INSPIRE].

    ADS  Google Scholar 

  53. B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [Erratum ibid. 101 (2008) 039901] [arXiv:0803.0672] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P. Kant, Three-Loop Calculation of the Higgs Boson Mass in Supersymmetry, arXiv:1111.7213 [INSPIRE].

  56. S. Heinemeyer, MSSM Higgs physics at higher orders, Int. J. Mod. Phys. A 21 (2006) 2659 [hep-ph/0407244] [INSPIRE].

    ADS  Google Scholar 

  57. LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs Cross sections: 1. Inclusive Observables, arXiv:1101.0593 [INSPIRE].

  58. M. Bastero-Gil, C. Hugonie, S. King, D. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198] [INSPIRE].

    ADS  Google Scholar 

  59. A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  60. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, arXiv:1108.1284 [INSPIRE].

  61. U. Ellwanger and C. Hugonie, The Upper bound on the lightest Higgs mass in the NMSSM revisited, Mod. Phys. Lett. A 22 (2007) 1581 [hep-ph/0612133] [INSPIRE].

    ADS  Google Scholar 

  62. R. Barbieri, L.J. Hall, A.Y. Papaioannou, D. Pappadopulo and V.S. Rychkov, An Alternative NMSSM phenomenology with manifest perturbative unification, JHEP 03 (2008) 005 [arXiv:0712.2903] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

    ADS  Google Scholar 

  64. P. Lodone, Supersymmetry without a light Higgs boson but with a light pseudoscalar, Int. J. Mod. Phys. A 26 (2011) 4053 [arXiv:1105.5248] [INSPIRE].

    ADS  Google Scholar 

  65. E. Bertuzzo and M. Farina, Higgs boson signals in lambda-SUSY with a Scale Invariant Superpotential, Phys. Rev. D 85 (2012) 015011 [arXiv:1105.5389] [INSPIRE].

    ADS  Google Scholar 

  66. E. Bertuzzo and M. Farina, Detecting the Higgs boson(s) in λSUSY, arXiv:1112.2190 [INSPIRE].

  67. M. Misiak et al., Estimate of B( B → X(s) at O(αs ), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. U. Ellwanger, Enhanced di-photon Higgs signal in the Next-to-Minimal Supersymmetric Standard Model, Phys. Lett. B 698 (2011) 293 [arXiv:1012.1201] [INSPIRE].

    ADS  Google Scholar 

  70. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: A Comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pinner.

Additional information

ArXiv ePrint: 1112.2703

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, L.J., Pinner, D. & Ruderman, J.T. A natural SUSY Higgs near 125 GeV. J. High Energ. Phys. 2012, 131 (2012). https://doi.org/10.1007/JHEP04(2012)131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)131

Keywords

Navigation