Skip to main content
Log in

Identifying boosted objects with N-subjettiness

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We introduce a new jet shape — N-subjettiness — designed to identify boosted hadronically-decaying objects like electroweak bosons and top quarks. Combined with a jet invariant mass cut, N-subjettiness is an effective discriminating variable for tagging boosted objects and rejecting the background of QCD jets with large invariant mass. In efficiency studies of boosted W bosons and top quarks, we find tagging efficiencies of 30% are achievable with fake rates of 1%. We also consider the discovery potential for new heavy resonances that decay to pairs of boosted objects, and find significant improvements are possible using N-subjettiness. In this way, N-subjettiness combines the advantages of jet shapes with the discriminating power seen in previous jet substructure algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: A Comparative study, Z. Phys. C 62 (1994) 127 [SPIRES].

    ADS  Google Scholar 

  2. J.M. Butterworth, B.E. Cox and J.R. Forshaw, W W scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [SPIRES].

    ADS  Google Scholar 

  3. J.M. Butterworth, A. Davison, E. Ozcan and P. Sherwood, Y splitter: An athena tool for studying jet substructure, ATL-PHYS-INT-2007-015.

  4. G. Brooijmans, High pT Hadronic Top Quark Identification, Part 1: Jet Mass and Y Splitter., ATL-COM-PHYS-2008-001 (2008).

  5. J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  6. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top Tagging: A Method for Identifying Boosted Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  7. L.G. Almeida et al., Substructure of high-p T Jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].

    Article  ADS  Google Scholar 

  9. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the Large Hadron Collider, arXiv:0810.0409 [SPIRES].

  10. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].

    ADS  Google Scholar 

  11. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy Particle Searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [SPIRES].

    ADS  Google Scholar 

  12. D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [SPIRES].

    Article  ADS  Google Scholar 

  13. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [SPIRES].

    Article  ADS  Google Scholar 

  14. J.M. Butterworth, J.R. Ellis, A.R. Raklev and G.P. Salam, Discovering baryon-number violating neutralino decays at the LHC, Phys. Rev. Lett. 103 (2009) 241803 [arXiv:0906.0728] [SPIRES].

    Article  ADS  Google Scholar 

  15. T. Plehn, G.P. Salam and M. Spannowsky, Fat Jets for a Light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  16. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering the Higgs Boson in New Physics Events using Jet Substructure, Phys. Rev. D 81 (2010) 111501 [arXiv:0912.4731] [SPIRES].

    ADS  Google Scholar 

  17. J. Gallicchio and M.D. Schwartz, Seeing in Color: Jet Superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [SPIRES].

    Article  ADS  Google Scholar 

  18. C.-R. Chen, M.M. Nojiri and W. Sreethawong, Search for the Elusive Higgs Boson Using Jet Structure at LHC, JHEP 11 (2010) 012 [arXiv:1006.1151] [SPIRES].

    Article  ADS  Google Scholar 

  19. A. Falkowski, D. Krohn, L.-T. Wang, J. Shelton and A. Thalapillil, Unburied Higgs, arXiv:1006.1650 [SPIRES].

  20. G.D. Kribs, A. Martin, T.S. Roy and M. Spannowsky, Discovering Higgs Bosons of the MSSM using Jet Substructure, Phys. Rev. D 82 (2010) 095012 [arXiv:1006.1656] [SPIRES].

    ADS  Google Scholar 

  21. L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template Overlap Method for Massive Jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [SPIRES].

    ADS  Google Scholar 

  22. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].

    Article  ADS  Google Scholar 

  23. B. Bhattacherjee, M. Guchait, S. Raychaudhuri and K. Sridhar, Boosted Top Quark Signals for Heavy Vector Boson Excitations in a Universal Extra Dimension Model, Phys. Rev. D 82 (2010) 055006 [arXiv:1006.3213] [SPIRES].

    ADS  Google Scholar 

  24. K. Rehermann and B. Tweedie, Efficient Identification of Boosted Semileptonic Top Quarks at the LHC, arXiv:1007.2221 [SPIRES].

  25. C. Hackstein and M. Spannowsky, Boosting Higgs discovery - the forgotten channel, Phys. Rev. D 82 (2010) 113012 [arXiv:1008.2202] [SPIRES].

    ADS  Google Scholar 

  26. C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [SPIRES].

    ADS  Google Scholar 

  27. A. Katz, M. Son and B. Tweedie, Jet Substructure and the Search for Neutral Spin-One Resonances in Electroweak Boson Channels, arXiv:1010.5253 [SPIRES].

  28. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N-Jettiness: An Inclusive Event Shape to Veto Jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [SPIRES].

    Article  ADS  Google Scholar 

  29. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet Shapes and Jet Algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [SPIRES].

    Article  ADS  Google Scholar 

  30. A. Banfi, M. Dasgupta, K. Khelifa-Kerfa and S. Marzani, Non-global logarithms and jet algorithms in high-pT jet shapes, JHEP 08 (2010) 064 [arXiv:1004.3483] [SPIRES].

    Article  ADS  Google Scholar 

  31. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  32. E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [SPIRES].

  33. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [SPIRES].

    Article  ADS  Google Scholar 

  34. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [SPIRES].

    ADS  Google Scholar 

  35. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  36. T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  37. M. Cacciari, G.P. Salam and G. Soyez, FastJet, http://fastjet.fr/.

  38. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  39. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [SPIRES].

    Article  ADS  Google Scholar 

  40. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better Jet Clustering Algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [SPIRES].

    Article  ADS  Google Scholar 

  41. M. Wobisch and T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic scattering, hep-ph/9907280 [SPIRES].

  42. G. Altarelli, B. Mele and M. Ruiz-Altaba, SEARCHING for new heavy vector bosons in \( p\bar{p} \) colliders, Z. Phys. C 45 (1989) 109 [SPIRES].

    Google Scholar 

  43. J.-H. Kim, Rest Frame Subjet Algorithm With SISCone Jet For Fully Hadronic Decaying Higgs Search, Phys. Rev. D 83 (2011) 011502(R) [arXiv:1011.1493] [SPIRES].

    ADS  Google Scholar 

  44. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [SPIRES].

    ADS  Google Scholar 

  45. S. Catani, G. Turnock and B.R. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Thaler.

Additional information

ArXiv ePrint: 1011.2268

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, J., Van Tilburg, K. Identifying boosted objects with N-subjettiness. J. High Energ. Phys. 2011, 15 (2011). https://doi.org/10.1007/JHEP03(2011)015

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)015

Keywords

Navigation