Skip to main content
Log in

A 119-125 GeV Higgs from a string derived slice of the CMSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The recent experimental hints for a relatively heavy Higgs with a mass in the range 119-125 GeV favour supersymmetric scenarios with a large mixing in the stop mass matrix. It has been shown that this is possible in the constrained Minimal Super-symmetric Standard Model (CMSSM), but only for a very specific relation between the trilinear parameter and the soft scalar mass, favouring A ≈ −2m for a relatively light spectrum, and sizable values of tan β. We describe here a string-derived scheme in which the first condition is automatic and the second arises as a consequence of imposing radiative EW symmetry breaking and viable neutralino dark matter in agreement with WMAP constraints. More specifically, we consider modulus dominated SUSY-breaking in Type II string compactifications and show that it leads to a very predictive CMSSM-like scheme, with small departures due to background fluxes. Imposing the above constraints leaves only one free parameter, which corresponds to an overall scale. We show that in this construction \( A = - 3/\sqrt {2} m \simeq - 2m \) and in the allowed parameter space tan β ≃ 38 − 41, leading to 119 GeV < m h < 125 GeV. The recent LHCb results on BR(B s  → μ + μ ) further constrain this range, leaving only the region with m h  ~ 125. GeV. We determine the detectability of this model and show that it could start being probed by the LHC at 7(8) TeV with a luminosity of 5(2) fb−1, and the whole parameter space would be accessible for 14 TeV and 25 fb−1. Furthermore, this scenario can host a long-lived stau with the right properties to lead to catalyzed BBN. We finally argue that anthropic arguments could favour the highest value for the Higgs mass that is compatible with neutralino dark matter, i.e., m h -125 GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gianotti, Update on the Standard Model Higgs searches in ATLAS, talk at CERN Public Seminar, CERN, Geneva Switzerland, 13 December 2011.

    Google Scholar 

  2. ATLAS collaboration, Combination of Higgs Boson Searches with up to 4.9 fb −1 of pp Collisions Data Taken at a center-of-mass energy of 7 TeV with the ATLAS Experiment at the LHC, ATLAS-CONF-2011-163 (2011).

  3. G. Tonelli, Update on the Standard Model Higgs searches in CMS, talk at CERN Public Seminar, CERN, Geneva Switzerland, 13 December 2011.

    Google Scholar 

  4. CMS collaboration, Combination of SM Higgs Searches, PAS-HIG-11-032 (2011).

  5. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric Grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  6. L.E. Ibáñez, Locally supersymmetric SU(5) Grand unification, Phys. Lett. B 118 (1982) 73 [INSPIRE].

    ADS  Google Scholar 

  7. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    ADS  Google Scholar 

  8. L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the Messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].

    ADS  Google Scholar 

  9. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, arXiv:1112.3017 [INSPIRE].

  10. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, arXiv:1112.2703 [INSPIRE].

  11. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  12. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  13. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t − b − τ Yukawa unification, arXiv:1112.2206 [INSPIRE].

  14. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, arXiv:1112.3068 [INSPIRE].

  16. J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125 GeV Higgs boson and muon g-2 in more generic gauge mediation, arXiv:1201.2611 [INSPIRE].

  17. A. Brignole, L.E. Ibáñez and C. Muñoz, Towards a theory of soft terms for the supersymmetric Standard Model, Nucl. Phys. B 422 (1994) 125 [Erratum ibid. B 436 (1995) 747] [hep-ph/9308271] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Cvetič, A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Target space duality, supersymmetry breaking and the stability of classical string vacua, Nucl. Phys. B 361 (1991) 194 [INSPIRE].

    Article  ADS  Google Scholar 

  19. L.E. Ibáñez and D. Lüst, Duality anomaly cancellation, minimal string unification and the effective low-energy Lagrangian of 4 − D strings, Nucl. Phys. B 382 (1992) 305 [hep-th/9202046] [INSPIRE].

    Article  ADS  Google Scholar 

  20. V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].

    ADS  Google Scholar 

  21. A. Brignole, L.E. Ibáñez and C. Muñoz, Soft supersymmetry breaking terms from supergravity and superstring models, hep-ph/9707209 [INSPIRE].

  22. L.E. Ibáñez, C. Muñoz and S. Rigolin, Aspect of type-I string phenomenology, Nucl. Phys. B 553 (1999) 43 [hep-ph/9812397] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L.E. Ibáñez, The fluxed MSSM, Phys. Rev. D 71 (2005) 055005 [hep-ph/0408064] [INSPIRE].

    ADS  Google Scholar 

  24. L. Aparicio, D. Cerdeño and L. Ibáñez, Modulus-dominated SUSY-breaking soft terms in F-theory and their test at LHC, JHEP 07 (2008) 099 [arXiv:0805.2943] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B. Allanach, A. Brignole and L. Ibáñez, Phenomenology of a fluxed MSSM, JHEP 05 (2005) 030 [hep-ph/0502151] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Choi and H.P. Nilles, The gaugino code, JHEP 04 (2007) 006 [hep-ph/0702146] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Conlon, C. Kom, K. Suruliz, B. Allanach and F. Quevedo, Sparticle spectra and LHC signatures for large volume string compactifications, JHEP 08 (2007) 061 [arXiv:0704.3403] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Blumenhagen, J. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY breaking in local string/F-theory models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.J. Heckman, G.L. Kane, J. Shao and C. Vafa, The footprint of F-theory at the LHC, JHEP 10 (2009) 039 [arXiv:0903.3609] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: an M-theory motivated model of particle physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  33. G. Kane, P. Kumar, R. Lu and B. Zheng, Higgs Mass Prediction for Realistic String/M Theory Vacua, arXiv:1112.1059 [INSPIRE].

  34. S. de Alwis, Classical and quantum SUSY breaking effects in IIB local models, JHEP 03 (2010) 078 [arXiv:0912.2950] [INSPIRE].

    Article  Google Scholar 

  35. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, A Higgs Mass Shift to 125 GeV and A Multi-Jet Supersymmetry Signal: Miracle of the Flippons at the \( \sqrt {s} = 7\;TeV \) LHC, Phys. Lett. B 710 (2012) 207 [arXiv:1112.3024] [INSPIRE].

    ADS  Google Scholar 

  36. L.E. Ibáñez and A. Uranga, String Theory and Partiicle Physics: An Introduction to String Phenomenology, Cambridge Univiersity Press, Cambridge U.K. (2012).

    Google Scholar 

  37. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. F. Denef, Les Houches Lectures on Constructing String Vacua, arXiv:0803.1194 [INSPIRE].

  39. M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733 [hep-th/0610102] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. M. Graña, MSSM parameters from supergravity backgrounds, Phys. Rev. D 67 (2003) 066006 [hep-th/0209200] [INSPIRE].

    ADS  Google Scholar 

  41. P.G. Camara, L. Ibáñez and A. Uranga, Flux induced SUSY breaking soft terms, Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

    Article  ADS  Google Scholar 

  42. D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral type IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P.G. Camara, L. Ibáñez and A. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Lüst, S. Reffert and S. Stieberger, MSSM with soft SUSY breaking terms from D7-branes with fluxes, Nucl. Phys. B 727 (2005) 264 [hep-th/0410074] [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Graña, T.W. Grimm, H. Jockers and J. Louis, Soft supersymmetry breaking in Calabi-Yau orientifolds with D-branes and fluxes, Nucl. Phys. B 690 (2004) 21 [hep-th/0312232] [INSPIRE].

    Article  ADS  Google Scholar 

  46. A. Font and L. Ibáñez, SUSY-breaking soft terms in a MSSM magnetized D7-brane model, JHEP 03 (2005) 040 [hep-th/0412150] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. L.E. Ibáñez and G.G. Ross, SU(2) L  × U(1) L Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts, Phys. Lett. B 110 (1982) 215 [INSPIRE].

    ADS  Google Scholar 

  49. T. Weigand, Lectures on F-theory compactifications and model building, Class. Quant. Grav. 27 (2010) 214004 [arXiv:1009.3497] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.J. Heckman, Particle physics implications of F-theory, Ann. Rev. Nucl. Part. Sci. (2010) [arXiv:1001.0577] [INSPIRE].

  51. M. Wijnholt, F-theory and unification, Fortsch. Phys. 58 (2010) 846 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B s  → μ + μ and B 0 → μ + μ , arXiv:1203.4493 [INSPIRE].

  53. G. Giudice and R. Rattazzi, Living dangerously with low-energy supersymmetry, Nucl. Phys. B 757 (2006) 19 [hep-ph/0606105] [INSPIRE].

    Article  ADS  Google Scholar 

  54. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. J.P. Conlon, D. Cremades and F. Quevedo, Kähler potentials of chiral matter fields for Calabi-Yau string compactifications, JHEP 01 (2007) 022 [hep-th/0609180] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134] [INSPIRE].

    Article  ADS  Google Scholar 

  58. D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral type IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092] [INSPIRE].

    Article  ADS  Google Scholar 

  59. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    Article  ADS  Google Scholar 

  60. W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, arXiv:1104.1573 [INSPIRE].

  61. Tevatron Electroweak Working Group for the CDF, D0 collaboration, Combination of CDF and D0 results on the mass of the top quark using up to 5.8 fb −1 of data, arXiv:1107.5255 [INSPIRE].

  62. WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  67. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    ADS  Google Scholar 

  68. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  69. CMS collaboration, S. Chatrchyan et al., Search for B(s) and B to dimuon decays in pp collisions at 7 TeV, Phys. Rev. Lett. 107 (2011) 191802 [arXiv:1107.5834] [INSPIRE].

    Article  ADS  Google Scholar 

  70. LHCb collaboration, R. Aaij et al., Search for the rare decays \( B_{{(s)}}^0 \to {\mu^{ + }}{\mu^{ - }} \) with 300 pb −1 at LHCb, LHCb-CONF-2011-037 (2011).

  71. CMS, LHCb collaboration, Search for the rare decay \( B_s^0 \to {\mu^{ + }}{\mu^{ - }} \) at the LHC with the CMS and LHCb experiments Combination of LHC results of the search for B s  → μ + μ decays, LHCb-CONF-2011-047 (2011).

  72. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].

    Google Scholar 

  74. G. Giudice and A. Masiero, A natural solution to the μ-problem in supergravity theories, Phys. Lett. B 206 (1988) 480 [INSPIRE].

    ADS  Google Scholar 

  75. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  76. T. Hahn, W. Hollik, S. Heinemeyer and G. Weiglein, Precision Higgs masses with FeynHiggs 2.2, eConf C 050318 (2005) 0106 [hep-ph/0507009] [INSPIRE].

    Google Scholar 

  77. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  78. S. Heinemeyer, W. Hollik and G. Weiglein, Constraints on tan Beta in the MSSM from the upper bound on the mass of the lightest Higgs boson, JHEP 06 (2000) 009 [hep-ph/9909540] [INSPIRE].

    Article  ADS  Google Scholar 

  79. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  80. B. Allanach, A. Djouadi, J. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  82. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α(\( M_Z^2 \)) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  83. F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to α(\( M_Z^2 \)), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

    ADS  Google Scholar 

  85. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7}\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  86. H. Baer, TASI 2008 lectures on Collider Signals. II. Missing E(T) signatures and the dark matter connection, arXiv:0901.4732 [INSPIRE].

  87. D. Feldman, Z. Liu and P. Nath, Sparticles at the LHC, JHEP 04 (2008) 054 [arXiv:0802.4085] [INSPIRE].

    Article  ADS  Google Scholar 

  88. N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  89. J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    Article  ADS  Google Scholar 

  90. W. Beenakker, R. Hopker and M. Spira, PROSPINO: a program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  91. S. Jadach, Z. Was, R. Decker and J.H. Kuhn, The τ decay library TAUOLA: Version 2.4, Comput. Phys. Commun. 76 (1993) 361 [INSPIRE].

    Article  ADS  Google Scholar 

  92. C. Berger et al., Next-to-Leading Order QCD Predictions for W + 3-Jet Distributions at Hadron Colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].

    ADS  Google Scholar 

  93. K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev. D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].

    ADS  Google Scholar 

  94. ATLAS collaboration, G. Aad et al., Measurement of the production cross section for W-bosons in association with jets in pp collisions at \( \sqrt {s} = {7}\;TeV \) with the ATLAS detector, Phys. Lett. B 698 (2011) 325 [arXiv:1012.5382] [INSPIRE].

    ADS  Google Scholar 

  95. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, CMS-PAS-SUS-11-004 (2011).

  96. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7}\;TeV \) proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572] [INSPIRE].

    ADS  Google Scholar 

  97. CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].

    Article  ADS  Google Scholar 

  98. CDMS, EDELWEISS collaboration, Z. Ahmed et al., Combined limits on WIMPs from the CDMS and EDELWEISS experiments, Phys. Rev. D 84 (2011) 011102 [arXiv:1105.3377] [INSPIRE].

    ADS  Google Scholar 

  99. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  100. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  101. http://www.physics.ucdavis.edu/∼conway/research/software/pgs/pgs.html.

  102. R.L. Arnowitt, B. Dutta and Y. Santoso, Coannihilation effects in supergravity and D-brane models, Nucl. Phys. B 606 (2001) 59 [hep-ph/0102181] [INSPIRE].

    Article  ADS  Google Scholar 

  103. R.L. Arnowitt, B. Dutta, T. Kamon, N. Kolev and D.A. Toback, Detection of SUSY in the stau-neutralino coannihilation region at the LHC, Phys. Lett. B 639 (2006) 46 [hep-ph/0603128] [INSPIRE].

    ADS  Google Scholar 

  104. D. Feldman, Z. Liu and P. Nath, The landscape of sparticle mass hierarchies and their signature space at the LHC, Phys. Rev. Lett. 99 (2007) 251802 [Erratum ibid. 100 (2008) 069902] [arXiv:0707.1873] [INSPIRE].

    Article  ADS  Google Scholar 

  105. T. Jittoh, J. Sato, T. Shimomura and M. Yamanaka, Long life stau in the minimal supersymmetric standard model, Phys. Rev. D 73 (2006) 055009 [hep-ph/0512197] [INSPIRE].

    ADS  Google Scholar 

  106. M. Pospelov, Particle physics catalysis of thermal Big Bang Nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].

    Article  ADS  Google Scholar 

  107. T. Jittoh et al., Possible solution to the Li-7 problem by the long lived stau, Phys. Rev. D 76 (2007) 125023 [arXiv:0704.2914] [INSPIRE].

    ADS  Google Scholar 

  108. K. Jedamzik, The cosmic Li-6 and Li-7 problems and BBN with long-lived charged massive particles, Phys. Rev. D 77 (2008) 063524 [arXiv:0707.2070] [INSPIRE].

    ADS  Google Scholar 

  109. J. Pradler and F.D. Steffen, Implications of catalyzed BBN in the CMSSM with gravitino dark matter, Phys. Lett. B 666 (2008) 181 [arXiv:0710.2213] [INSPIRE].

    ADS  Google Scholar 

  110. T. Jittoh et al., Big-bang nucleosynthesis with a long-lived charged massive particle including 4 He spallation processes, Phys. Rev. D 84 (2011) 035008 [arXiv:1105.1431] [INSPIRE].

    ADS  Google Scholar 

  111. CMS collaboration, V. Khachatryan et al., Search for Heavy Stable Charged Particles in pp collisions at \( \sqrt {s} = {7}\;TeV \), JHEP 03 (2011) 024 [arXiv:1101.1645] [INSPIRE].

    Article  ADS  Google Scholar 

  112. ATLAS collaboration, G. Aad et al., Search for Heavy Long-Lived Charged Particles with the ATLAS detector in pp collisions at \( \sqrt {s} = {7}\;TeV \), Phys. Lett. B 703 (2011) 428 [arXiv:1106.4495] [INSPIRE].

    ADS  Google Scholar 

  113. I. Albuquerque, G. Burdman and Z. Chacko, Neutrino telescopes as a direct probe of supersymmetry breaking, Phys. Rev. Lett. 92 (2004) 221802 [hep-ph/0312197] [INSPIRE].

    Article  ADS  Google Scholar 

  114. M. Ahlers, J. Kersten and A. Ringwald, Long-lived staus at neutrino telescopes, JCAP 07 (2006) 005 [hep-ph/0604188] [INSPIRE].

    Article  ADS  Google Scholar 

  115. B. Cañadas, D.G. Cerdeño, C. Muñoz and S. Panda, Stau detection at neutrino telescopes in scenarios with supersymmetric dark matter, JCAP 04 (2009) 028 [arXiv:0812.1067] [INSPIRE].

    Article  ADS  Google Scholar 

  116. C.J. Hogan, Why the universe is just so, Rev. Mod. Phys. 72 (2000) 1149 [astro-ph/9909295] [INSPIRE].

    Article  ADS  Google Scholar 

  117. C.J. Hogan, Nuclear astrophysics of worlds in the string landscape, Phys. Rev. D 74 (2006) 123514 [astro-ph/0602104] [INSPIRE].

    ADS  Google Scholar 

  118. L.J. Hall and Y. Nomura, Evidence for the multiverse in the Standard Model and beyond, Phys. Rev. D 78 (2008) 035001 [arXiv:0712.2454] [INSPIRE].

    ADS  Google Scholar 

  119. T. Damour and J.F. Donoghue, Constraints on the variability of quark masses from nuclear binding, Phys. Rev. D 78 (2008) 014014 [arXiv:0712.2968] [INSPIRE].

    ADS  Google Scholar 

  120. J.F. Donoghue, The fine-tuning problems of particle physics and anthropic mechanisms, in Universe or multiverse, B. Carr eds., Cambridge University Press, Cambridge U.K. (2007), pg. 231-246 [arXiv:0710.4080] [INSPIRE].

    Google Scholar 

  121. J.F. Donoghue, K. Dutta, A. Ross and M. Tegmark, Likely values of the Higgs vev, Phys. Rev. D 81 (2010) 073003 [arXiv:0903.1024] [INSPIRE].

    ADS  Google Scholar 

  122. S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett. 59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  123. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  124. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

    Article  ADS  Google Scholar 

  125. L.J. Hall and Y. Nomura, A finely-predicted Higgs boson mass from a finely-tuned weak scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

    Article  ADS  Google Scholar 

  126. G. Elor, H.-S. Goh, L.J. Hall, P. Kumar and Y. Nomura, Environmentally selected WIMP dark matter with high-scale supersymmetry breaking, Phys. Rev. D 81 (2010) 095003 [arXiv:0912.3942] [INSPIRE].

    ADS  Google Scholar 

  127. M. Cabrera, J. Casas and A. Delgado, Upper bounds on superpartner masses from upper bounds on the Higgs boson mass, Phys. Rev. Lett. 108 (2012) 021802 [arXiv:1108.3867] [INSPIRE].

    Article  ADS  Google Scholar 

  128. G.F. Giudice and A. Strumia, Probing high-scale and split supersymmetry with Higgs mass measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

    Article  ADS  Google Scholar 

  129. L.J. Hall and Y. Nomura, Spread supersymmetry, JHEP 01 (2012) 082 [arXiv:1111.4519] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Cerdeño.

Additional information

ArXiv ePrint: 1202.0822

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, L., Cerdeño, D.G. & Ibáñez, L.E. A 119-125 GeV Higgs from a string derived slice of the CMSSM. J. High Energ. Phys. 2012, 126 (2012). https://doi.org/10.1007/JHEP04(2012)126

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)126

Keywords

Navigation