Skip to main content
Log in

A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by the recent LHC hints of a Higgs boson around 125 GeV, we assume a SM-like Higgs with the mass 123-127 GeV and study its implication in low energy SUSY by comparing the MSSM and NMSSM. We consider various experimental constraints at 2σ level (including the muon g − 2 and the dark matter relic density) and perform a comprehensive scan over the parameter space of each model. Then in the parameter space which is allowed by current experimental constraints and also predicts a SM-like Higgs in 123-127 GeV, we examine the properties of the sensitive parameters (like the top squark mass and the trilinear coupling A t ) and calculate the rates of the di-photon signal and the V V * (V = W, Z) signals at the LHC. Our typical findings are: (i) In the MSSM the top squark and A t must be large and thus incur some fine-tuning, which can be much ameliorated in the NMSSM; (ii) In the MSSM a light stau is needed to enhance the di- photon rate of the SM-like Higgs to exceed its SM prediction, while in the NMSSM the di-photon rate can be readily enhanced in several ways; (iii) In the MSSM the signal rates of pphV V * at the LHC are never enhanced compared with their SM predictions, while in the NMSSM they may get enhanced significantly; (iv) A large part of the parameter space so far survived will be soon covered by the expected XENON100(2012) sensitivity (especially for the NMSSM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at \( \sqrt {s} = {7}\,TeV \) with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb-1 of pp collisions at \( \sqrt {s} = {7}\,TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  3. ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ (∗) → 4l with 4.8 fb-1 of pp collision data at \( \sqrt {s} = {7}\,TeV \) with ATLAS, arXiv:1202.1415 [INSPIRE].

  4. CMS collaboration, S. Chatrchyan et al., Search for a Higgs boson in the decay channel H to ZZ(*) to q qbar l-l + in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.1416 [INSPIRE].

  5. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.1487 [INSPIRE].

  6. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7}\,TeV \) TeV, arXiv:1202.1488 [INSPIRE].

  7. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.1489 [INSPIRE].

  8. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel H to ZZ to 4 leptons in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.1997 [INSPIRE].

  9. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.3478 [INSPIRE].

  10. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the H to ZZ to ll tau tau decay channel in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.3617 [INSPIRE].

  11. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to tau pairs in pp collisions at \( \sqrt {s} = {7}\,TeV \), arXiv:1202.4083 [INSPIRE].

  12. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt {s} = {7}\,TeV \) arXiv:1202.4195 [INSPIRE].

  13. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs Results from Natural New Physics Perspective, arXiv:1202.3144 [INSPIRE].

  14. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs Suspects at the LHC, arXiv:1202.3697 [INSPIRE].

  15. A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, arXiv:1202.3415 [INSPIRE].

  16. S. Moretti and S. Munir, Di-photon Higgs signals at the LHC in the next-to-minimal supersymmetric standard model, Eur. Phys. J. C 47 (2006) 791 [hep-ph/0603085] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Hsieh and C.-P. Yuan, Lone Higgs at the LHC, Phys. Rev. D 78 (2008) 053006 [arXiv:0806.2608] [INSPIRE].

    ADS  Google Scholar 

  18. I. Low and S. Shalgar, Implications of the Higgs Discovery in the MSSM Golden Region, JHEP 04 (2009) 091 [arXiv:0901.0266] [INSPIRE].

    Article  ADS  Google Scholar 

  19. U. Ellwanger, Enhanced di-photon Higgs signal in the Next-to-Minimal Supersymmetric Standard Model, Phys. Lett. B 698 (2011) 293 [arXiv:1012.1201] [INSPIRE].

    ADS  Google Scholar 

  20. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: A Comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    ADS  Google Scholar 

  21. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, arXiv:1112.3548 [INSPIRE].

  22. H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1., Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567-569] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Djouadi, The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M.S. Carena, J. Espinosa, M. Quirós and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    ADS  Google Scholar 

  26. P.H. Chankowski, J.R. Ellis and S. Pokorski, The Fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].

    ADS  Google Scholar 

  27. R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    ADS  Google Scholar 

  28. G.L. Kane and S. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].

    ADS  Google Scholar 

  29. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Maniatis, The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  31. J.R. Ellis, J. Gunion, H.E. Haber, L. Roszkowski and F. Zwirner, Higgs Bosons in a Nonminimal Supersymmetric Model, Phys. Rev. D 39 (1989) 844 [INSPIRE].

    ADS  Google Scholar 

  32. M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989) 3635 [INSPIRE].

    ADS  Google Scholar 

  33. S. King and P. White, Resolving the constrained minimal and next-to-minimal supersymmetric standard models, Phys. Rev. D 52 (1995) 4183 [hep-ph/9505326] [INSPIRE].

    ADS  Google Scholar 

  34. B. Ananthanarayan and P. Pandita, The nonminimal supersymmetric standard model with tan Beta approximately = m(t)/m(b), Phys. Lett. B 353 (1995) 70 [hep-ph/9503323] [INSPIRE].

    ADS  Google Scholar 

  35. B.A. Dobrescu and K.T. Matchev, Light axion within the next-to-minimal supersymmetric standard model, JHEP 09 (2000) 031 [hep-ph/0008192] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Dermisek and J.F. Gunion, Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and haa decays, Phys. Rev. Lett. 95 (2005) 041801 [hep-ph/0502105] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G. Hiller, B physics signals of the lightest CP odd Higgs in the NMSSM at large tan beta, Phys. Rev. D 70 (2004) 034018 [hep-ph/0404220] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  38. F. Domingo and U. Ellwanger, Updated Constraints from B Physics on the MSSM and the NMSSM, JHEP 12 (2007) 090 [arXiv:0710.3714] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Z. Heng, R. Oakes, W. Wang, Z. Xiong and J.M. Yang, B meson dileptonic decays in the next-to-minimal supersymmetric model with a light CP-odd Higgs boson, Phys. Rev. D 77 (2008) 095012 [arXiv:0801.1169] [INSPIRE].

    ADS  Google Scholar 

  40. R.N. Hodgkinson and A. Pilaftsis, Radiative Yukawa Couplings for Supersymmetric Higgs Singlets at Large tan β, Phys. Rev. D 76 (2007) 015007 [hep-ph/0612188] [INSPIRE].

    ADS  Google Scholar 

  41. W. Wang, Z. Xiong and J.M. Yang, Residual effects of heavy sparticles in bottom quark Yukawa coupling: A Comparative study for MSSM and NMSSM, Phys. Lett. B 680 (2009) 167 [arXiv:0901.3818] [INSPIRE].

    ADS  Google Scholar 

  42. J.M. Yang, SUSY Dark Matter In Light Of CDMS/XENON Limits, Int. J. Mod. Phys. D 20 (2011) 1383 [arXiv:1102.4942] [INSPIRE].

    ADS  Google Scholar 

  43. U. Ellwanger and C. Hugonie, The Upper bound on the lightest Higgs mass in the NMSSM revisited, Mod. Phys. Lett. A 22 (2007) 1581 [hep-ph/0612133] [INSPIRE].

    ADS  Google Scholar 

  44. U. Ellwanger and C. Hugonie, Masses and couplings of the lightest Higgs bosons in the (M + 1) SSM, Eur. Phys. J. C 25 (2002) 297 [hep-ph/9909260] [INSPIRE].

    Article  ADS  Google Scholar 

  45. U. Ellwanger, Higgs Bosons in the Next-to-Minimal Supersymmetric Standard Model at the LHC, Eur. Phys. J. C 71 (2011) 1782 [arXiv:1108.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs Benchmarks Near 125 GeV, arXiv:1201.2671 [INSPIRE].

  47. Z. Kang, J. Li and T. Li, On Naturalness of the (N)MSSM, arXiv:1201.5305 [INSPIRE].

  48. M. Bastero-Gil, C. Hugonie, S. King, D. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198] [INSPIRE].

    ADS  Google Scholar 

  49. A. Delgado, C. Kolda, J. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  50. U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and Fine Tuning in the NMSSM: Implications of Early LHC Results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning and phenomenology of the generalised NMSSM, arXiv:1108.1284 [INSPIRE].

  52. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs Search Results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  53. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  54. L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, arXiv:1112.2703 [INSPIRE].

  55. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and Low-Scale SUSY Breaking, arXiv:1112.3068 [INSPIRE].

  56. A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs Sector: A pMSSM Study of Higgs Searches, \( B_s^{\text{o}} \to {{\mu }^{ + }}{{\mu }^{ - }} \) and Dark Matter Direct Detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    Article  ADS  Google Scholar 

  57. O. Buchmueller et al., Higgs and Supersymmetry, arXiv:1112.3564 [INSPIRE].

  58. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, arXiv:1112.3647 [INSPIRE].

  59. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, arXiv:1112.4391 [INSPIRE].

  60. A. Arvanitaki and G. Villadoro, A Non Standard Model Higgs at the LHC as a Sign of Naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  61. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, arXiv:1112.3017 [INSPIRE].

  62. I. Gogoladze, Q. Shafi and C.S. Un, Higgs Boson Mass from t-b-τ Yukawa Unification, arXiv:1112.2206 [INSPIRE].

  63. J.L. Feng, K.T. Matchev and D. Sanford, Focus Point Supersymmetry Redux, arXiv:1112.3021 [INSPIRE].

  64. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs Boson Mass Predictions in SUGRA Unification, Recent LHC-7 Results and Dark Matter, arXiv:1112.3645 [INSPIRE].

  65. A. Bottino, N. Fornengo and S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider, arXiv:1112.5666 [INSPIRE].

  66. J.F. Gunion, Y. Jiang and S. Kraml, The Constrained NMSSM and Higgs near 125 GeV, arXiv:1201.0982 [INSPIRE].

  67. P. Fileviez Perez, SUSY Spectrum and the Higgs Mass in the BLMSSM, arXiv:1201.1501 [INSPIRE].

  68. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Historical Profile of the Higgs Boson, arXiv:1201.6045 [INSPIRE].

  69. N. Karagiannakis, G. Lazarides and C. Pallis, Dark Matter and Higgs Mass in the CMSSM with Yukawa Quasi-Unification, arXiv:1201.2111 [INSPIRE].

  70. L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian Implications of Current LHC Supersymmetry and Dark Matter Detection Searches for the Constrained MSSM, arXiv:1202.1503 [INSPIRE].

  71. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119-125 GeV Higgs from a string derived slice of the CMSSM, arXiv:1202.0822 [INSPIRE].

  72. C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the Standard Model Higgs Boson in UMSSM, arXiv:1202.0054 [INSPIRE].

  73. K.A. Olive, The impact of XENON100 and the LHC on Supersymmetric Dark Matter, arXiv:1202.2324 [INSPIRE].

  74. J. Ellis and K.A. Olive, Revisiting the Higgs Mass and Dark Matter in the CMSSM, arXiv:1202.3262 [INSPIRE].

  75. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, arXiv:1202.4038 [INSPIRE].

  76. D. Ghosh, M. Guchait and D. Sengupta, Higgs signal in Chargino-Neutralino production at the LHC, arXiv:1202.4937 [INSPIRE].

  77. N. Desai, B. Mukhopadhyaya and S. Niyogi, Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC, arXiv:1202.5190 [INSPIRE].

  78. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, arXiv:1112.3336 [INSPIRE].

  79. . Miller, D.J., R. Nevzorov and P. Zerwas, The Higgs sector of the next-to-minimal supersymmetric standard model, Nucl. Phys. B 681 (2004) 3 [hep-ph/0304049] [INSPIRE].

    Article  ADS  Google Scholar 

  80. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    Article  ADS  Google Scholar 

  81. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].

  82. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP - even Higgs bosons in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  84. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  85. M. Frank et al., The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  86. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    ADS  Google Scholar 

  87. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  88. J. Cao and J.M. Yang, Anomaly of Zbb coupling revisited in MSSM and NMSSM, JHEP 12 (2008) 006 [arXiv:0810.0751] [INSPIRE].

    Article  ADS  Google Scholar 

  89. M. Davier, A. Hoecker, B. Malaescu, C. Yuan and Z. Zhang, Reevaluation of the hadronic contribution to the muon magnetic anomaly using new e + e → π+π cross section data from BABAR, Eur. Phys. J. C 66 (2010) 1 [arXiv:0908.4300] [INSPIRE].

    Article  ADS  Google Scholar 

  90. WMAP collaboration, J. Dunkley et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [INSPIRE].

  91. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].

    Article  ADS  Google Scholar 

  92. H. Ohki et al., Nucleon sigma term and strange quark content from lattice QCD with exact chiral symmetry, Phys. Rev. D 78 (2008) 054502 [arXiv:0806.4744] [INSPIRE].

    ADS  Google Scholar 

  93. MILC collaboration, D. Toussaint and W. Freeman, The Strange quark condensate in the nucleon in 2+1 flavor QCD, Phys. Rev. Lett. 103 (2009) 122002 [arXiv:0905.2432] [INSPIRE].

    Article  ADS  Google Scholar 

  94. J. Giedt, A.W. Thomas and R.D. Young, Dark matter, the CMSSM and lattice QCD, Phys. Rev. Lett. 103 (2009) 201802 [arXiv:0907.4177] [INSPIRE].

    Article  ADS  Google Scholar 

  95. N. Desai and B. Mukhopadhyaya, Constraints on supersymmetry with light third family from LHC data, arXiv:1111.2830 [INSPIRE].

  96. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Probing Light Stop Pairs at the LHC, Phys. Rev. D 85 (2012) 035005 [arXiv:1111.2250] [INSPIRE].

    ADS  Google Scholar 

  97. B. He, T. Li and Q. Shafi, Impact of LHC Searches on Light Top Squark, arXiv:1112.4461 [INSPIRE].

  98. M.S. Carena, D. Garcia, U. Nierste and C.E. Wagner, Effective Lagrangian for the \( \overline t b{{H}^{ + }} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].

    Article  ADS  Google Scholar 

  99. J. Cao and J.M. Yang, Current experimental constraints on NMSSM with large lambda, Phys. Rev. D 78 (2008) 115001 [arXiv:0810.0989] [INSPIRE].

    ADS  Google Scholar 

  100. J. Cao, H.E. Logan and J.M. Yang, Experimental constraints on NMSSM and implications on its phenomenology, Phys. Rev. D 79 (2009) 091701 [arXiv:0901.1437] [INSPIRE].

    ADS  Google Scholar 

  101. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

  102. J. Cao, K.-i. Hikasa, W. Wang, J.M. Yang and L.-X. Yu, Constraints of dark matter direct detection experiments on the MSSM and implications on LHC Higgs search, Phys. Rev. D 82 (2010) 051701 [arXiv:1006.4811] [INSPIRE].

    ADS  Google Scholar 

  103. J. Cao, K.-i. Hikasa, W. Wang, J.M. Yang and L.-X. Yu, SUSY dark matter in light of CDMS II results: a comparative study for different models, JHEP 07 (2010) 044 [arXiv:1005.0761] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Min Yang.

Additional information

ArXiv ePrint: 1202.5821

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Heng, Z., Yang, J.M. et al. A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM. J. High Energ. Phys. 2012, 86 (2012). https://doi.org/10.1007/JHEP03(2012)086

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)086

Keywords

Navigation