Skip to main content
Log in

Efficient identification of boosted semileptonic top quarks at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Top quarks produced in multi-TeV processes will have large Lorentz boosts, and their decay products will be highly collimated. In semileptonic decay modes, this often leads to the merging of the b-jet and the hard lepton according to standard event reconstructions, which can complicate new physics searches. Here we explore ways of efficiently recovering this signal in the muon channel at the LHC. We perform a particle-level study of events with muons produced inside of boosted tops, as well as in generic QCD jets and from W-strahlung off of hard quarks. We characterize the discriminating power of cuts previously explored in the literature, as well two new ones. We find a particularly powerful isolation variable which can potentially reject light QCD jets with hard embedded muons at the 103 level while retaining 80∼90% of the tops. This can also be fruitfully combined with other cuts for O(1) greater discrimination. For W-strahlung, a simple p T -scaled maximum ΔR cut performs comparably to a highly idealized top-mass reconstruction, rejecting an O(1) fraction of the background with percent-scale loss of signal. Using these results, we suggest a set of well-motivated baseline cuts for any physics analysis involving semileptonic top quarks at TeV-scale momenta, using neither b-tagging nor missing energy as discriminators. We demonstrate the utility of our cuts in searching for resonances in the \( t\bar{t} \) invariant mass spectrum. For example, our results suggest that 100 fb−1 of data from a 14 TeV LHC could be used to discover a warped KK gluon up to 4.5 TeV or higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Agashe, A. Azatov and L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [SPIRES].

    ADS  Google Scholar 

  2. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [SPIRES].

    Article  ADS  Google Scholar 

  3. CDF collaboration, T. Aaltonen et al., Search for new color-octet vector particle decaying to \( t\bar{t} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Lett. B 691 (2010) 183 [arXiv:0911.3112] [SPIRES].

    ADS  Google Scholar 

  4. D0 collaboration, V.M. Abazov et al., Search for \( t\bar{t} \) resonances in the lepton plus jets final state in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].

    ADS  Google Scholar 

  5. J.E. Garcia, M. Lechowski, E. Ros and D. Rousseau, Search for the decays Z H Zh and W H Wh in the little Higgs model assuming m (h) = 120 GeV, ATL-PHYS-2004-001.

  6. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].

    Article  ADS  Google Scholar 

  7. G. Brooijmans, High pT hadronic top quark identification. Part I: jet mass and Y splitter, ATL-PHYS-CONF-2008-008 [SPIRES].

  8. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].

    Article  ADS  Google Scholar 

  9. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].

    ADS  Google Scholar 

  11. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [SPIRES].

    Article  ADS  Google Scholar 

  12. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].

    Article  ADS  Google Scholar 

  13. S. Chekanov and J. Proudfoot, Searches for TeV-scale particles at the LHC using jet shapes, Phys. Rev. D 81 (2010) 114038 [arXiv:1002.3982] [SPIRES].

    ADS  Google Scholar 

  14. CMS collaboration, S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, PoS(EPS-HEP 2009)360 [SPIRES].

  15. CMS collaboration, A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet tagging, CMS PAS JME-09-001.

  16. CMS collaboration, Search for high-mass resonances decaying into top-antitop pairs in the all-hadronic mode, CMS PAS EXO-09-002.

  17. V. Barger, T. Han and D.G.E. Walker, Top quark pairs at high invariant mass: a model-independent discriminator of new physics at the LHC, Phys. Rev. Lett. 100 (2008) 031801 [hep-ph/0612016] [SPIRES].

    Article  ADS  Google Scholar 

  18. K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].

    ADS  Google Scholar 

  19. B. Lillie, L. Randall and L.-T. Wang, The bulk RSKK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].

    Article  ADS  Google Scholar 

  20. U. Baur and L.H. Orr, High p T top quarks at the Large Hadron Collider, Phys. Rev. D 76 (2007) 094012 [arXiv:0707.2066] [SPIRES].

    ADS  Google Scholar 

  21. U. Baur and L.H. Orr, Searching for \( t\bar{t} \) resonances at the Large Hadron Collider, Phys. Rev. D 77 (2008) 114001 [arXiv:0803.1160] [SPIRES].

    ADS  Google Scholar 

  22. J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].

    Article  ADS  Google Scholar 

  23. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].

    Article  ADS  Google Scholar 

  24. ATLAS collaboration, Reconstruction of high mass \( t\bar{t} \) resonances in the lepton+jets channel, ATL-PHYS-PUB-2009-081.

  25. T. Sjostrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  26. G. Corcella et al., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].

    Article  ADS  Google Scholar 

  27. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  28. D. Krohn, J. Thaler and L.T. Wang, Jets with variable R, JHEP 06 (2009) 059 [arXiv:0903.0392] [SPIRES].

    Article  ADS  Google Scholar 

  29. CMS collaboration, G.L. Bayatian et al., CMS Physics: technical design report. Volume I: Detector performance and software, CERN-LHCC-2006-001 [SPIRES].

  30. ATLAS collaboration, ATLAS detector and physics performance: technical design report. Volume 1, CERN-LHCC-99-014 [SPIRES].

  31. CMS collaboration, G.L. Bayatian et al., CMS, the Compact Muon Solenoid. Muon technical design report, CERN-LHCC-97-032.

  32. M. Cacciari, J. Rojo, G.P. Salam and G. Soyez, Quantifying the performance of jet definitions for kinematic reconstruction at the LHC, JHEP 12 (2008) 032 [arXiv:0810.1304] [SPIRES].

    Article  ADS  Google Scholar 

  33. L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Z′ discovery potential at the LHC in the minimal BL extension of the standard model, arXiv:1002.3586 [SPIRES].

  34. H. Davoudiasl, G. Perez and A. Soni, The little Randall-Sundrum model at the Large Hadron Collider, Phys. Lett. B 665 (2008) 67 [arXiv:0802.0203] [SPIRES].

    ADS  Google Scholar 

  35. H. Davoudiasl, S. Gopalakrishna and A. Soni, Big signals of little Randall-Sundrum models, Phys. Lett. B 686 (2010) 239 [arXiv:0908.1131] [SPIRES].

    ADS  Google Scholar 

  36. J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [SPIRES].

    ADS  Google Scholar 

  37. D. Krohn, J. Shelton and L.-T. Wang, Measuring the polarization of boosted hadronic tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brock Tweedie.

Additional information

ArXiv ePrint: 1007.2221

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehermann, K., Tweedie, B. Efficient identification of boosted semileptonic top quarks at the LHC. J. High Energ. Phys. 2011, 59 (2011). https://doi.org/10.1007/JHEP03(2011)059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)059

Keywords

Navigation