Skip to main content
Log in

Maximizing boosted top identification by minimizing N-subjettiness

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

N -subjettiness is a jet shape designed to identify boosted hadronic objects such as top quarks. Given N subjet axes within a jet, N-subjettiness sums the angular distances of jet constituents to their nearest subjet axis. Here, we generalize and improve on N -subjettiness by minimizing over all possible subjet directions, using a new variant of the k-means clustering algorithm. On boosted top benchmark samples from the BOOST2010 workshop, we demonstrate that a simple cut on the 3-subjettiness to 2-subjettiness ratio yields 20% (50%) tagging efficiency for a 0.23% (4.1%) fake rate, making N -subjettiness a highly effective boosted top tagger. N-subjettiness can be modified by adjusting an angular weighting exponent, and we find that the jet broadening measure is preferred for boosted top searches. We also explore multivariate techniques, and show that additional improvements are possible using a modified Fisher discriminant. Finally, we briefly mention how our minimization procedure can be extended to the entire event, allowing the event shape N-jettiness to act as a fixed N cone jet algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].

    Article  ADS  Google Scholar 

  3. ATLAS collaboration, G. Aad et al., Search for new phenomena with the monojet and missing transverse momentum signature using the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 705 (2011) 294 [arXiv:1106.5327] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, S. Chatrchyan et al., Search for new physics with a mono-jet and missing transverse energy in pp collisions at \( \sqrt {s} = 7\;TeV \) , Phys. Rev. Lett. 107 (2011) 201804 [arXiv:1106.4775] [INSPIRE].

    Article  ADS  Google Scholar 

  5. ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {s} = 7\;TeV \) measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].

    Article  ADS  Google Scholar 

  6. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = 7\;TeV \) proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].

  8. CMS collaboration, S. Chatrchyan et al., Search for new physics with jets and missing transverse momentum in pp collisions at \( \sqrt {s} = 7\;TeV \) , JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].

    Article  ADS  Google Scholar 

  9. CMS collaboration, Jet substructure algorithms, Physics Analysis Summary PAS-JME-10-013, CERN, Geneva Switzerland (2011).

    Google Scholar 

  10. CMS collaboration, Search for BSM t \( \overline t \) production in the boosted all-hadronic final state, Physics Analysis Summary CMS-PAS-EXO-11-006, CERN, Geneva Switzerland (2011).

    Google Scholar 

  11. ATLAS collaboration, Measurement of jet mass and substructure for inclusive jets in \( \sqrt {s} = 7\;TeV \) pp collisions with the ATLAS experiment, note ATLAS-CONF-2011-073, CERN, Geneva Switzerland (2011).

    Google Scholar 

  12. DØ collaboration, V.M. Abazov et al., Measurement of color flow in t \( \overline t \) events from p \( \overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \) , Phys. Rev. D 83 (2011) 092002 [arXiv:1101.0648] [INSPIRE].

    ADS  Google Scholar 

  13. CDF collaboration, T. Aaltonen et al., Study of substructure of high transverse momentum jets produced in proton-antiproton collisions at \( \sqrt {s} = 1.96\;TeV \), arXiv:1106.5952 [INSPIRE].

  14. A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.H. Seymour, Searches for new particles using cone and cluster jet algorithms: a comparative study, Z. Phys. C 62 (1994) 127 [INSPIRE].

    ADS  Google Scholar 

  16. J. Butterworth, B. Cox and J.R. Forshaw, WW scattering at the CERN LHC, Phys. Rev. D 65 (2002) 096014 [hep-ph/0201098] [INSPIRE].

    ADS  Google Scholar 

  17. G. Brooijmans, High pT hadronic top quark identification, note PHYS-CONF-2008-008, CERN, Geneva Switzerland (2008) [ATL-COM-PHYS-2008-001].

    Google Scholar 

  18. J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Plehn, G.P. Salam and M. Spannowsky, Fat jets for a light Higgs, Phys. Rev. Lett. 104 (2010) 111801 [arXiv:0910.5472] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, arXiv:1102.1012 [INSPIRE].

  25. M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

    ADS  Google Scholar 

  28. S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].

    ADS  Google Scholar 

  29. D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].

    Article  ADS  Google Scholar 

  30. D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].

    ADS  Google Scholar 

  32. D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].

    ADS  Google Scholar 

  33. J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].

    Article  ADS  Google Scholar 

  34. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C.F. Berger, T. Kucs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D 68 (2003) 014012 [hep-ph/0303051] [INSPIRE].

    ADS  Google Scholar 

  36. S.D. Ellis, C.K. Vermilion, J.R. Walsh, A. Hornig and C. Lee, Jet shapes and jet algorithms in SCET, JHEP 11 (2010) 101 [arXiv:1001.0014] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.-H. Kim, Rest frame subjet algorithm with SISCone jet for fully hadronic decaying Higgs search, Phys. Rev. D 83 (2011) 011502 [arXiv:1011.1493] [INSPIRE].

    ADS  Google Scholar 

  38. C. Englert, T.S. Roy and M. Spannowsky, Ditau jets in Higgs searches, Phys. Rev. D 84 (2011) 075026 [arXiv:1106.4545] [INSPIRE].

    ADS  Google Scholar 

  39. Y. Bai and J. Shelton, Composite octet searches with jet substructure, arXiv:1107.3563 [INSPIRE].

  40. S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  41. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  42. S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Info. Theor. 28 (1982) 129.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  44. S. Catani, G. Turnock and B. Webber, Jet broadening measures in e + e annihilation, Phys. Lett. B 295 (1992) 269 [INSPIRE].

    ADS  Google Scholar 

  45. C. Ding, D. Zhou, X. He and H. Zha, R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in Proceedings of the 23rd international conference on Machine learning, ICML 06, ACM, New York U.S.A. (2006), pg. 281.

  46. M. Cacciari, G.P. Salam and G. Soyez, FastJet: software package for jet finding in pp and e + e collisions webpage, http://www.fastjet.fr/.

  47. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k T jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  48. J. Gallicchio and M.D. Schwartz, Quark and gluon tagging at the LHC, Phys. Rev. Lett. 107 (2011) 172001 [arXiv:1106.3076] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  51. J. Butterworth, J. Couchman, B. Cox and B. Waugh, KtJet: a C++ implementation of the K clustering algorithm, Comput. Phys. Commun. 153 (2003) 85 [hep-ph/0210022] [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  53. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  55. J. Butterworth, J.R. Forshaw and M. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [INSPIRE].

    ADS  Google Scholar 

  56. ATLAS collaboration, ATLAS Monte Carlo tunes for MC09, note PHYS-PUB-2010-002, CERN, Geneva Switzerland (2010).

    Google Scholar 

  57. P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  58. CMS collaboration, A Cambridge-Aachen (C-A) based Jet Algorithm for boosted top-jet tagging, Physics Analysis Summary PAS-JME-09-001, CERN, Geneva Switzerland (2009).

    Google Scholar 

  59. CMS collaboration, Search for high mass tt resonances in the all-hadronic mode, Physics Analysis Summary PAS-EXO-09-002, CERN, Geneva Switzerland (2009).

    Google Scholar 

  60. S. Rappoccio, A new top jet tagging algorithm for highly boosted top jets, note CMS-CR-2009-255, CERN, Geneva Switzerland (2009) [CERN-CMS-CR-2009-255].

    Google Scholar 

  61. ATLAS collaboration, Prospects for top anti-top resonance searches using early ATLAS data., note PHYS-PUB-2010-008, CERN, Geneva Switzerland (2010).

    Google Scholar 

  62. ATLAS collaboration, Reconstruction of high mass tt resonances in the lepton+jets channel, note PHYS-PUB-2009-081, CERN, Geneva Switzerland (2009) [ATL-COM-PHYS-2009-255].

    Google Scholar 

  63. R. Fisher, The use of multiple measurements in taxonomic problems, Annals Eugen. 7 (1936) 179.

    Article  Google Scholar 

  64. T. Anderson and R. Bahadur, Classification into two multivariate normal distributions with different covariance matrices, Annals Math. Statist. 33 (1962) 420.

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Chekanov, A new jet algorithm based on the k-means clustering for the reconstruction of heavy states from jets, Eur. Phys. J. C 47 (2006) 611 [hep-ph/0512027] [INSPIRE].

    Article  ADS  Google Scholar 

  66. C. Berger et al., Snowmass 2001: jet energy flow project, eConf C 010630 (2001) P512 [hep-ph/0202207] [INSPIRE].

    Google Scholar 

  67. L. Angelini et al., Jet analysis by deterministic annealing, Phys. Lett. B 545 (2002) 315 [hep-ph/0207032] [INSPIRE].

    ADS  Google Scholar 

  68. L. Angelini et al., Deterministic annealing as a jet clustering algorithm in hadronic collisions, Phys. Lett. B 601 (2004) 56 [hep-ph/0407214] [INSPIRE].

    ADS  Google Scholar 

  69. D. Grigoriev, E. Jankowski and F. Tkachov, Towards a standard jet definition, Phys. Rev. Lett. 91 (2003) 061801 [hep-ph/0301185] [INSPIRE].

    Article  ADS  Google Scholar 

  70. D. Grigoriev, E. Jankowski and F. Tkachov, Optimal jet finder, Comput. Phys. Commun. 155 (2003) 42 [hep-ph/0301226] [INSPIRE].

    Article  ADS  Google Scholar 

  71. Y.-S. Lai and B.A. Cole, Jet reconstruction in hadronic collisions by Gaussian filtering, arXiv:0806.1499 [INSPIRE].

  72. I. Volobouev, FFTJet: a package for multiresolution particle jet reconstruction in the Fourier domain, arXiv:0907.0270 [INSPIRE].

  73. S. Ellis, J. Huston and M. Tonnesmann, On building better cone jet algorithms, eConf C 010630 (2001) P513 [hep-ph/0111434] [INSPIRE].

    Google Scholar 

  74. S. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].

    Article  ADS  Google Scholar 

  75. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].

    Article  ADS  Google Scholar 

  76. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL + NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  77. T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The soft function for exclusive N -jet production at hadron colliders, Phys. Rev. D 83 (2011) 114030 [arXiv:1102.4344] [INSPIRE].

    ADS  Google Scholar 

  78. C.W. Bauer, N.D. Dunn and A. Hornig, Subtractions for SCET soft functions, arXiv:1102.4899 [INSPIRE].

  79. C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and resummation for dijet invariant mass spectra, arXiv:1106.6047 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Thaler.

Additional information

Arxiv eprint: 1108.2701

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thaler, J., Van Tilburg, K. Maximizing boosted top identification by minimizing N-subjettiness. J. High Energ. Phys. 2012, 93 (2012). https://doi.org/10.1007/JHEP02(2012)093

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2012)093

Keywords

Navigation