Skip to main content
Log in

SUSY, the Third Generation and the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We develop a bottom-up approach to studying SUSY with light stops and sbottoms, but with other squarks and sleptons heavy and beyond reach of the LHC. We discuss the range of squark, gaugino and Higgsino masses for which the electroweak scale is radiatively stable over the “little hierarchy” below 10TeV. We review and expand on indirect constraints on this scenario, in particular from flavor and CP tests. We emphasize that in this context, R-parity violation is very well motivated. The phenomenological differences between Majorana and Dirac gauginos are also discussed. Finally, we focus on the light subsystem of stops, sbottom and neutralino with R-parity, in order to probe the current collider bounds. We find that 1/fb LHC bounds are mild and large parts of the motivated parameter space remain open, while the 10/fb data can be much more decisive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  2. N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C 11 (1981) 153 [INSPIRE].

    ADS  Google Scholar 

  3. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    ADS  Google Scholar 

  4. A.G. Cohen, D. Kaplan and A. Nelson, The More minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    ADS  Google Scholar 

  5. R. Sundrum, SUSY Splits, But Then Returns, JHEP 01 (2011) 062 [arXiv:0909.5430] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A Non Standard Supersymmetric Spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Craig, D. Green and A. Katz, (De)Constructing a Natural and Flavorful Supersymmetric Standard Model, JHEP 07 (2011) 045 [arXiv:1103.3708] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K.S. Jeong, J.E. Kim and M.-S. Seo, Gauge mediation to effective SUSY through U(1)s with a dynamical SUSY breaking and string compactification, Phys. Rev. D 84 (2011) 075008 [arXiv:1107.5613] [INSPIRE].

    ADS  Google Scholar 

  9. H. Baer, J. Sender and X. Tata, The Search for top squarks at the Fermilab Tevatron Collider, Phys. Rev. D 50 (1994) 4517 [hep-ph/9404342] [INSPIRE].

    ADS  Google Scholar 

  10. H. Baer, P. Mercadante and X. Tata, Searching for bottom squarks at luminosity upgrades of the Fermilab Tevatron, Phys. Rev. D 59 (1999) 015010 [hep-ph/9808361] [INSPIRE].

    ADS  Google Scholar 

  11. H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective Supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G.L. Kane, E. Kuflik, R. Lu and L.-T. Wang, Top Channel for Early SUSY Discovery at the LHC, Phys. Rev. D 84 (2011) 095004 [arXiv:1101.1963] [INSPIRE].

    ADS  Google Scholar 

  13. J. Alwall, J.L. Feng, J. Kumar and S. Su, Dark Matter-Motivated Searches for Exotic 4th Generation Quarks in Tevatron and Early LHC Data, Phys. Rev. D 81 (2010) 114027 [arXiv:1002.3366] [INSPIRE].

    ADS  Google Scholar 

  14. J. Alwall, J.L. Feng, J. Kumar and S. Su, Bs with Direct Decays: Tevatron and LHC Discovery Prospects in the \(b\overline b\) + MET Channel, Phys. Rev. D 84 (2011) 074010 [arXiv:1107.2919] [INSPIRE].

    ADS  Google Scholar 

  15. N. Bhattacharyya, A. Choudhury and A. Datta, Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data, Phys. Rev. D 84 (2011) 095006 [arXiv:1107.1997] [INSPIRE].

    ADS  Google Scholar 

  16. Y. Kats, P. Meade, M. Reece and D. Shih, The Status of GMSB After 1/fb at the LHC, JHEP 02 (2012) 115 [arXiv:1110.6444] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Essig, E. Izaguirre, J. Kaplan and J.G. Wacker, Heavy Flavor Simplified Models at the LHC, JHEP 01 (2012) 074 [arXiv:1110.6443] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY Endures, arXiv:1110.6926 [INSPIRE].

  19. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM (BMSSM), Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005] [INSPIRE].

    ADS  Google Scholar 

  20. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

    ADS  Google Scholar 

  21. L. Cavicchia, R. Franceschini and V.S. Rychkov, Supersymmetry without a light Higgs boson at the CERN LHC, Phys. Rev. D 77 (2008) 055006 [arXiv:0710.5750] [INSPIRE].

    ADS  Google Scholar 

  22. A. Delgado, C. Kolda, J. Olson and A. de la Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning and phenomenology of the generalised NMSSM, arXiv:1108.1284 [INSPIRE].

  24. B.A. Dobrescu and P.J. Fox, Uplifted supersymmetric Higgs region, Eur. Phys. J. C 70 (2010) 263 [arXiv:1001.3147] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Ibe, A. Rajaraman and Z. Surujon, Does Supersymmetry Require Two Higgs Doublets?, arXiv:1012.5099 [INSPIRE].

  26. R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Espinosa and M. Quirós, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92 [INSPIRE].

    ADS  Google Scholar 

  28. J. Espinosa and M. Quirós, Upper bounds on the lightest Higgs boson mass in general supersymmetric Standard Models, Phys. Lett. B 302 (1993) 51 [hep-ph/9212305] [INSPIRE].

    ADS  Google Scholar 

  29. J.R. Espinosa and M. Quirós, Gauge unification and the supersymmetric light Higgs mass, Phys. Rev. Lett. 81 (1998) 516 [hep-ph/9804235] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical Soft Terms and Flavor Physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.A. Bagger, K.T. Matchev and R.-J. Zhang, QCD corrections to flavor changing neutral currents in the supersymmetric standard model, Phys. Lett. B 412 (1997) 77 [hep-ph/9707225] [INSPIRE].

    ADS  Google Scholar 

  32. K. Agashe and M. Graesser, Supersymmetry breaking and the supersymmetric flavor problem: An Analysis of decoupling the first two generation scalars, Phys. Rev. D 59 (1999) 015007 [hep-ph/9801446] [INSPIRE].

    ADS  Google Scholar 

  33. R. Contino and I. Scimemi, The Supersymmetric flavor problem for heavy first two generation scalars at next-to-leading order, Eur. Phys. J. C 10 (1999) 347 [hep-ph/9809437] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal Flavour Violation with hierarchical squark masses, JHEP 12 (2010) 070 [Erratum ibid. 1102 (2011) 044] [arXiv:1011.0730] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Hamzaoui, M. Pospelov and R. Roiban, Constrained MSSM and the electric dipole moment of the neutron, Phys. Rev. D 56 (1997) 4295 [hep-ph/9702292] [INSPIRE].

    ADS  Google Scholar 

  37. Y. Li, S. Profumo and M. Ramsey-Musolf, A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM, JHEP 08 (2010) 062 [arXiv:1006.1440] [INSPIRE].

    Article  ADS  Google Scholar 

  38. A. Pomarol, Grand unified theories without the desert, Phys. Rev. Lett. 85 (2000) 4004 [hep-ph/0005293] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Agashe, R. Contino and R. Sundrum, Top compositeness and precision unification, Phys. Rev. Lett. 95 (2005) 171804 [hep-ph/0502222] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y. Kawamura, Triplet doublet splitting, proton stability and extra dimension, Prog. Theor. Phys. 105 (2001) 999 [hep-ph/0012125] [INSPIRE].

    Article  ADS  Google Scholar 

  41. L.J. Hall and Y. Nomura, Grand unification in higher dimensions, Annals Phys. 306 (2003) 132 [hep-ph/0212134] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].

    Article  ADS  Google Scholar 

  43. R. Mohapatra, Neutron-Anti-Neutron Oscillation: Theory and Phenomenology, J. Phys. G 36 (2009) 104006 [arXiv:0902.0834] [INSPIRE].

    ADS  Google Scholar 

  44. L. Hall and L. Randall, U(1)-R symmetric supersymmetry, Nucl. Phys. B 352 (1991) 289 [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Randall and N. Rius, The Minimal U(1)-R symmetric model revisited, Phys. Lett. B 286 (1992) 299 [INSPIRE].

    ADS  Google Scholar 

  46. P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].

    Article  ADS  Google Scholar 

  47. C. Kilic and S. Thomas, Signatures of Resonant Super-Partner Production with Charged-Current Decays, Phys. Rev. D 84 (2011) 055012 [arXiv:1104.1002] [INSPIRE].

    ADS  Google Scholar 

  48. G.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Hisano, M. Nagai, T. Naganawa and M. Senami, Electric Dipole Moments in PseudoDirac Gauginos, Phys. Lett. B 644 (2007) 256 [hep-ph/0610383] [INSPIRE].

    ADS  Google Scholar 

  50. G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].

    ADS  Google Scholar 

  51. D0 collaboration, V.M. Abazov et al., Search for scalar bottom quarks and third-generation leptoquarks in p p-bar collisions at sqrt(s) = 1.96 TeV, Phys. Lett. B 693 (2010) 95 [arXiv:1005.2222] [INSPIRE].

    ADS  Google Scholar 

  52. D0 collaboration, V.M. Abazov et al., Search for pair production of the scalar top quark in the electron+muon final state, Phys. Lett. B 696 (2011) 321 [arXiv:1009.5950]. Long author list - awaiting processing [INSPIRE].

    ADS  Google Scholar 

  53. CDF collaboration, T. Aaltonen et al., Search for Production of Heavy Particles Decaying to Top Quarks and Invisible Particles in pp collisions at \(\sqrt {s} = 1.96\,\,TeV\), Phys. Rev. Lett. 106 (2011) 191801 [arXiv:1103.2482] [INSPIRE].

    Article  ADS  Google Scholar 

  54. CDF collaboration, T. Aaltonen et al., Search for New T Particles in Final States with Large Jet Multiplicities and Missing Transverse Energy in ppbar Collisions at sqrt(s) = 1.96 TeV, Phys. Rev. Lett. 107 (2011) 191803 [arXiv:1107.3574] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Y. Kats and D. Shih, Light Stop NLSPs at the Tevatron and LHC, JHEP 08 (2011) 049 [arXiv:1106.0030] [INSPIRE].

    Article  ADS  Google Scholar 

  56. CMS collaboration, S. Chatrchyan et al., Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy, Phys. Rev. Lett. 107 (2011) 221804 [arXiv:1109.2352] [INSPIRE].

    Article  ADS  Google Scholar 

  57. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, PAS-SUS-11-004.

  58. CMS collaboration, Search for new physics in events with b-quark jets and missing transverse energy in proton-proton collisions at 7 TeV, PAS-SUS-11-006.

  59. ATLAS collaboration, Search for supersymmetry in pp collisions at sqrt(s) = 7TeV in final states with missing transverse momentum, b-jets and no leptons with the ATLAS detector, ATLAS-CONF-2011-098 (2011).

  60. CMS collaboration, Search for new physics with single-leptons at the LHC, PAS-SUS-11-015.

  61. CMS collaboration, Search for new physics in events with opposite-sign dileptons and missing transverse energy, PAS-SUS-11-011.

  62. ATLAS collaboration, Search for supersymmetry in pp 1 collisions at s = 7 TeV in final states with missing transverse momentum, b-jets and one lepton with the ATLAS detector, ATLAS-CONF-2011-130 (2011).

  63. ATLAS collaboration, G. Aad et al., Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrts = 7 TeV pp collisions using 1 f b1 of ATLAS data, Phys. Rev. D 85 (2012) 012006 [arXiv:1109.6606] [INSPIRE].

    ADS  Google Scholar 

  64. ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in sqrt(s) = 7 TeV proton-proton collisions, arXiv:1109.6572 [INSPIRE].

  65. CMS collaboration, Search for supersymmetry in all-hadronic events with MT2, PAS-SUS-11-005.

  66. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  69. W. Beenakker, R. Hopker and M. Spira, PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD, hep-ph/9611232 [INSPIRE].

  70. ATLAS collaboration, G. Aad et al., Search for New Phenomena in ttbar Events With Large Missing Transverse Momentum in Proton-Proton Collisions at sqrt(s) = 7 TeV with the ATLAS Detector, Phys. Rev. Lett. 108 (2012) 041805 [arXiv:1109.4725] [INSPIRE].

    Article  ADS  Google Scholar 

  71. T. Yamagata, Y. Takamori and H. Utsunomiya, Search for anomalously heavy hydrogen in deep sea water at 4000-m, Phys. Rev. D 47 (1993) 1231 [INSPIRE].

    ADS  Google Scholar 

  72. J. Kang, M.A. Luty and S. Nasri, The Relic abundance of long-lived heavy colored particles, JHEP 09 (2008) 086 [hep-ph/0611322] [INSPIRE].

    Article  ADS  Google Scholar 

  73. CMS collaboration, Search for Heavy Stable Charged Particles in pp collisions at \(\sqrt {s} = 7\,\,TeV\), CMS PAS EXO-11-022.

  74. W. Beenakker, S. Brensing, M. Krämer, A. Kulesza, E. Laenen, et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].

    Article  ADS  Google Scholar 

  75. CMS collaboration, S. Chatrchyan et al., Search for Three-Jet Resonances in pp Collisions at sqrt(s) = 7 TeV, Phys. Rev. Lett. 107 (2011) 101801 [arXiv:1107.3084] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Katz.

Additional information

ArXiv ePrint: 1110.6670

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brust, C., Katz, A., Lawrence, S. et al. SUSY, the Third Generation and the LHC. J. High Energ. Phys. 2012, 103 (2012). https://doi.org/10.1007/JHEP03(2012)103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2012)103

Keywords

Navigation