Skip to main content
Log in

Current experimental bounds on stop mass in natural SUSY

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Motivated by the recent progress of direct search for the productions of stop pair and sbottom pair at the LHC, we examine the constraints of the search results on the stop (\( \widetilde{t} \) 1) mass in natural SUSY. We first scan the parameter space of natural SUSY in the framework of MSSM, considering the constraints from the Higgs mass, B-physics and electroweak precision measurements. Then in the allowed parameter space we perform a Monte Carlo simulation for stop pair production followed by \( \widetilde{t} \) 1t \( \widetilde{\chi}_1^0 \) or \( \widetilde{t} \) 1b \( \widetilde{\chi}_1^{+} \) and sbottom pair production followed by \( \widetilde{b} \) 1b \( \widetilde{\chi}_1^0 \) or \( \widetilde{b} \) 1t \( \widetilde{\chi}\overline{1} \). Using the combined results of ATLAS with 20.1 fb−1 from the search of ℓ + jets + T , hadronic \( t\overline{t} \) + T and 2b + T , we find that a stop lighter than 600 GeV can be excluded at 95% CL in this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. G.G. Ross and R. Roberts, Minimal supersymmetric unification predictions, Nucl. Phys. B 377 (1992) 571 [INSPIRE].

    Article  ADS  Google Scholar 

  4. B. de Carlos and J. Casas, One loop analysis of the electroweak breaking in supersymmetric models and the fine tuning problem, Phys. Lett. B 309 (1993) 320 [hep-ph/9303291] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.W. Anderson and D.J. Castano, Measures of fine tuning, Phys. Lett. B 347 (1995) 300 [hep-ph/9409419] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Dimopoulos and G. Giudice, Naturalness constraints in supersymmetric theories with nonuniversal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P.H. Chankowski, J.R. Ellis and S. Pokorski, The fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].

    Article  ADS  Google Scholar 

  8. R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    Article  ADS  Google Scholar 

  9. G.L. Kane and S. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Giusti, A. Romanino and A. Strumia, Natural ranges of supersymmetric signals, Nucl. Phys. B 550 (1999) 3 [hep-ph/9811386] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.R. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, Observables in low-energy superstring models, Mod. Phys. Lett. A 1 (1986) 57 [INSPIRE].

    Article  ADS  Google Scholar 

  13. R. Barbieri and G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    Article  ADS  Google Scholar 

  14. Z. Kang, J. Li and T. Li, On naturalness of the MSSM and NMSSM, JHEP 11 (2012) 024 [arXiv:1201.5305] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the third generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  17. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Dine, A. Kagan and S. Samuel, Naturalness in supersymmetry, or raising the supersymmetry breaking scale, Phys. Lett. B 243 (1990) 250 [INSPIRE].

    Article  ADS  Google Scholar 

  19. A.G. Cohen, D. Kaplan and A. Nelson, The more minimal supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].

    Article  ADS  Google Scholar 

  20. H. Baer, S. Kraml, A. Lessa, S. Sekmen and X. Tata, Effective supersymmetry at the LHC, JHEP 10 (2010) 018 [arXiv:1007.3897] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Feldman, G. Kane, E. Kuflik and R. Lu, A new (string motivated) approach to the little hierarchy problem, Phys. Lett. B 704 (2011) 56 [arXiv:1105.3765] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G.W. Anderson, D.J. Castano and A. Riotto, Naturalness lowers the upper bound on the lightest Higgs boson mass in supersymmetry, Phys. Rev. D 55 (1997) 2950 [hep-ph/9609463] [INSPIRE].

    ADS  Google Scholar 

  23. K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].

    ADS  Google Scholar 

  24. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  25. J. Hisano, K. Kurosawa and Y. Nomura, Natural effective supersymmetry, Nucl. Phys. B 584 (2000) 3 [hep-ph/0002286] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].

    ADS  Google Scholar 

  27. M. Asano, H.D. Kim, R. Kitano and Y. Shimizu, Natural supersymmetry at the LHC, JHEP 12 (2010) 019 [arXiv:1010.0692] [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Akula, M. Liu, P. Nath and G. Peim, Naturalness, supersymmetry and implications for LHC and dark matter, Phys. Lett. B 709 (2012) 192 [arXiv:1111.4589] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Bhattacharyya and T.S. Ray, Naturally split supersymmetry, JHEP 05 (2012) 022 [arXiv:1201.1131] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Krippendorf, H.P. Nilles, M. Ratz and M.W. Winkler, The heterotic string yields natural supersymmetry, Phys. Lett. B 712 (2012) 87 [arXiv:1201.4857] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. B. Allanach and B. Gripaios, Hide and seek with natural supersymmetry at the LHC, JHEP 05 (2012) 062 [arXiv:1202.6616] [INSPIRE].

    Article  ADS  Google Scholar 

  32. H. Baer, V. Barger, P. Huang and X. Tata, Natural supersymmetry: LHC, dark matter and ILC searches, JHEP 05 (2012) 109 [arXiv:1203.5539] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.L. Feng and D. Sanford, A natural 125 GeV Higgs boson in the MSSM from focus point supersymmetry with A-terms, Phys. Rev. D 86 (2012) 055015 [arXiv:1205.2372] [INSPIRE].

    ADS  Google Scholar 

  34. L. Randall and M. Reece, Single-scale natural SUSY, JHEP 08 (2013) 088 [arXiv:1206.6540] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Wymant, Optimising stop naturalness, Phys. Rev. D 86 (2012) 115023 [arXiv:1208.1737] [INSPIRE].

    ADS  Google Scholar 

  36. H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a 125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Baer et al., Radiative natural supersymmetry: reconciling electroweak fine-tuning and the Higgs boson mass, Phys. Rev. D 87 (2013) 115028 [arXiv:1212.2655] [INSPIRE].

    ADS  Google Scholar 

  38. P. Lodone, Supersymmetry phenomenology beyond the MSSM after 5 fb−1 of LHC data, Int. J. Mod. Phys. A 27 (2012) 1230010 [arXiv:1203.6227] [INSPIRE].

    Article  ADS  Google Scholar 

  39. H.M. Lee, V. Sanz and M. Trott, Hitting sbottom in natural SUSY, JHEP 05 (2012) 139 [arXiv:1204.0802] [INSPIRE].

    Article  ADS  Google Scholar 

  40. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Hardy, Is natural SUSY natural?, arXiv:1306.1534 [INSPIRE].

  42. M. Blanke, G.F. Giudice, P. Paradisi, G. Perez and J. Zupan, Flavoured naturalness, JHEP 06 (2013) 022 [arXiv:1302.7232] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Bhattacherjee, J.L. Evans, M. Ibe, S. Matsumoto and T.T. Yanagida, Natural SUSYs last hope: R-parity violation via UDD operators, Phys. Rev. D 87 (2013) 115002 [arXiv:1301.2336] [INSPIRE].

    ADS  Google Scholar 

  44. C. Han, F. Wang and J.M. Yang, Natural SUSY from SU(5) orbifold GUT, arXiv:1304.5724 [INSPIRE].

  45. G. Altarelli, The Higgs: so simple yet so unnatural, arXiv:1308.0545 [INSPIRE].

  46. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb−1 of \( \sqrt{s} \) = 8 TeV proton-proton collision data, ATLAS-CONF-2013-047, CERN, Geneva Switzerland (2013).

  47. ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049, CERN, Geneva Switzerland (2013).

  48. ATLAS collaboration, Search for supersymmetry in events with four or more leptons in 21 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-036, CERN, Geneva Switzerland (2013).

  49. CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006, CERN, Geneva Switzerland (2013).

  50. CMS collaboration, Search for supersymmetery in final states with missing transverse momentum and 0, 1, 2, or ≥ 3 b jets in 8 TeV pp collisions, CMS-PAS-SUS-12-016, CERN, Geneva Switzerland (2012).

  51. CMS collaboration, Search for RPV supersymmetry with three or more leptons and b-tags, CMS-PAS-SUS-12-027, CERN, Geneva Switzerland (2012).

  52. ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s} \) = 8 TeV pp collisions using 21 fb−1 of ATLAS data, ATLAS-CONF-2013-037, CERN, Geneva Switzerland (2013).

  53. ATLAS collaboration, Search for direct production of the top squark in the all-hadronic \( t\overline{t} \) + \( E_{\mathrm{T}}^{\mathrm{miss}} \) final state in 21fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-024, CERN, Geneva Switzerland (2013).

  54. ATLAS collaboration, Search for direct third generation squark pair production in final states with missing transverse momentum and two b-jets in \( \sqrt{s} \) = 8 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2013-053, CERN, Geneva Switzerland (2013).

  55. R.L. Arnowitt and P. Nath, Loop corrections to radiative breaking of electroweak symmetry in supersymmetry, Phys. Rev. D 46 (1992) 3981 [INSPIRE].

    ADS  Google Scholar 

  56. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  59. J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Cao, L. Wu, P. Wu and J.M. Yang, The Z + photon and diphoton decays of the Higgs boson as a joint probe of low energy SUSY models, JHEP 09 (2013) 043 [arXiv:1301.4641] [INSPIRE].

    Article  ADS  Google Scholar 

  61. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Cao, C. Han, L. Wu, J.M. Yang and Y. Zhang, Probing natural SUSY from stop pair production at the LHC, JHEP 11 (2012) 039 [arXiv:1206.3865] [INSPIRE].

    Article  ADS  Google Scholar 

  63. K. Ghosh et al., Top jets as a probe of degenerate stop-NLSP LSP scenario in the framework of CMSSM, Phys. Rev. Lett. 110 (2013) 141801 [arXiv:1207.2429] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. Boughezal and M. Schulze, Precise predictions for top quark plus missing energy signatures at the LHC, arXiv:1212.0898 [INSPIRE].

  65. M.L. Graesser and J. Shelton, Hunting asymmetric stops, Phys. Rev. Lett. 111 (2013) 121802 [arXiv:1212.4495] [INSPIRE].

    Article  ADS  Google Scholar 

  66. Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Detecting light stop pairs in coannihilation scenarios at the LHC, Phys. Rev. D 87 (2013) 055007 [arXiv:1211.2997] [INSPIRE].

    ADS  Google Scholar 

  67. G. Bélanger, R. Godbole, L. Hartgring and I. Niessen, Top polarization in stop production at the LHC, JHEP 05 (2013) 167 [arXiv:1212.3526] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R. Franceschini and R. Torre, RPV stops bump off the background, Eur. Phys. J. C 73 (2013) 2422 [arXiv:1212.3622] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D. Ghosh and D. Sengupta, Searching the sbottom in the four lepton channel at the LHC, Eur. Phys. J. C 73 (2013) 2342 [arXiv:1209.4310] [INSPIRE].

    Article  ADS  Google Scholar 

  70. X.-J. Bi, Q.-S. Yan and P.-F. Yin, Light stop/sbottom pair production searches in the NMSSM, Phys. Rev. D 87 (2013) 035007 [arXiv:1209.2703] [INSPIRE].

    ADS  Google Scholar 

  71. C.-Y. Chen, A. Freitas, T. Han and K.S. Lee, New physics from the top at the LHC, JHEP 11 (2012) 124 [arXiv:1207.4794] [INSPIRE].

    ADS  Google Scholar 

  72. E.L. Berger, Q.-H. Cao, J.-H. Yu and H. Zhang, Measuring top quark polarization in top pair plus missing energy events, Phys. Rev. Lett. 109 (2012) 152004 [arXiv:1207.1101] [INSPIRE].

    Article  ADS  Google Scholar 

  73. P. Agrawal and C. Frugiuele, Mixing stops at the LHC, arXiv:1304.3068 [INSPIRE].

  74. J. Guo, Z. Kang, J. Li and T. Li, Implications of Higgs sterility for the Higgs and stop sectors, arXiv:1308.3075 [INSPIRE].

  75. Z. Han, A. Katz, D. Krohn and M. Reece, (Light) stop signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Drees, M. Hanussek and J.S. Kim, Light stop searches at the LHC with monojet events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].

    ADS  Google Scholar 

  77. J.S. Kim, M. Hanussek and M. Drees, Light stop phenomenology, PoS(ICHEP2012)112 [arXiv:1304.7559] [INSPIRE].

  78. A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].

    Article  ADS  Google Scholar 

  79. D.S. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and T : the shape of things to come, Phys. Rev. D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].

    ADS  Google Scholar 

  80. Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the top background of the stop search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].

    Article  ADS  Google Scholar 

  81. Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, A toolkit of the stop search via the chargino decay, JHEP 08 (2013) 085 [arXiv:1304.3148] [INSPIRE].

    Article  ADS  Google Scholar 

  82. D. Ghosh, Boosted di-boson from a mixed heavy stop, arXiv:1308.0320 [INSPIRE].

  83. A. Chakraborty, D.K. Ghosh, D. Ghosh and D. Sengupta, Stop and sbottom search using dileptonic M T2 variable and boosted top technique at the LHC, arXiv:1303.5776 [INSPIRE].

  84. T. Plehn, M. Spannowsky and M. Takeuchi, Stop searches in 2012, JHEP 08 (2012) 091 [arXiv:1205.2696] [INSPIRE].

    Article  ADS  Google Scholar 

  85. D.E. Kaplan, K. Rehermann and D. Stolarski, Searching for direct stop production in hadronic top data at the LHC, JHEP 07 (2012) 119 [arXiv:1205.5816] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N -subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  87. O. Buchmueller and J. Marrouche, Universal mass limits on gluino and third-generation squarks in the context of natural-like SUSY spectra, arXiv:1304.2185 [INSPIRE].

  88. M. Perelstein and B. Shakya, XENON100 implications for naturalness in the MSSM, NMSSM and λ-SUSY, arXiv:1208.0833 [INSPIRE].

  89. A. Choudhury and A. Datta, Neutralino dark matter confronted by the LHC constraints on electroweak SUSY signals, JHEP 09 (2013) 119 [arXiv:1305.0928] [INSPIRE].

    Article  ADS  Google Scholar 

  90. S. Mohanty, S. Rao and D. Roy, Predictions of a natural SUSY dark matter model for direct and indirect detection experiments, JHEP 11 (2012) 175 [arXiv:1208.0894] [INSPIRE].

    Article  ADS  Google Scholar 

  91. C. Boehm, P.S.B. Dev, A. Mazumdar and E. Pukartas, Naturalness of light neutralino dark matter in pMSSM after LHC, XENON100 and Planck data, JHEP 06 (2013) 113 [arXiv:1303.5386] [INSPIRE].

    Article  ADS  Google Scholar 

  92. G.D. Kribs, A. Martin and A. Menon, Natural supersymmetry and implications for Higgs physics, Phys. Rev. D 88 (2013) 035025 [arXiv:1305.1313] [INSPIRE].

    ADS  Google Scholar 

  93. K. Kowalska and E.M. Sessolo, Natural MSSM after the LHC 8 TeV run, Phys. Rev. D 88 (2013) 075001 [arXiv:1307.5790] [INSPIRE].

    ADS  Google Scholar 

  94. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

  95. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  96. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  98. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  99. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  100. F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  101. F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of BK γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  102. J. Cao and J.M. Yang, Anomaly of Zb \( \overline{b} \) coupling revisited in MSSM and NMSSM, JHEP 12 (2008) 006 [arXiv:0810.0751] [INSPIRE].

    Article  ADS  Google Scholar 

  103. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  104. G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  105. M.S. Carena, M. Quirós and C. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].

    Article  ADS  Google Scholar 

  106. H.E. Haber, R. Hempfling and A.H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C 75 (1997) 539 [hep-ph/9609331] [INSPIRE].

    Google Scholar 

  107. J. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567] [INSPIRE].

    Article  ADS  Google Scholar 

  108. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  109. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  110. S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  111. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  112. F. Caravaglios, M.L. Mangano, M. Moretti and R. Pittau, A new approach to multijet calculations in hadron collisions, Nucl. Phys. B 539 (1999) 215 [hep-ph/9807570] [INSPIRE].

    Article  ADS  Google Scholar 

  113. W. Beenakker, M. Krämer, T. Plehn, M. Spira and P. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].

    Article  ADS  Google Scholar 

  114. J. Conway, Calculation of cross section upper limits combining channels incorporating correlated and uncorrelated systematic uncertainties, CDF/PUB/STATISTICS/PUBLIC/6428, Fermilab, Batavia U.S.A. (2005).

  115. J. Conway and K. Maeshima, Upper limits on Poisson processes incorporating uncertainties in acceptance and background, CDF/PUB/EXOTIC/PUBLIC/4476, Fermilab, Batavia U.S.A. (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengcheng Han.

Additional information

ArXiv ePrint: 1308.5307

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, C., Hikasa, Ki., Wu, L. et al. Current experimental bounds on stop mass in natural SUSY. J. High Energ. Phys. 2013, 216 (2013). https://doi.org/10.1007/JHEP10(2013)216

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)216

Keywords

Navigation