Skip to main content
Log in

Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Confronted with the LHC data of a Higgs boson around 125 GeV, different models of low energy SUSY show different behaviors: some are favored, some are marginally survived and some are strongly disfavored or excluded. In this note we update our previous scan over the parameter space of various low energy SUSY models by considering the latest experimental limits like the LHCb data for B s μ + μ and the XENON 100 (2012) data for dark matter-nucleon scattering. Then we confront the predicted properties of the SM-like Higgs boson in each model with the combined 7TeV and 8TeV Higgs search data ofthe LHC. For a SM-like Higgs boson around 125 GeV, we have the following observations: (i) The most favored model is the NMSSM, whose predictions about the Higgs boson can naturally (without any fine tuning) agree with the experimental data at 1σ level, better than the SM; (ii) The MSSM can fit the LHC data quite well but suffer from some extent of fine tuning; (iii) The nMSSM is excluded at 3σ level after considering all the available Higgs data; (iv) The CMSSM is quite disfavored since it is hard to give a 125 GeV Higgs boson mass and at the same time cannot enhance the di-photon signal rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, F. Gianotti, Update on the standard model Higgs searches in ATLAS, CERN Public Seminar, CERN, Switzerland (2012).

  2. ATLAS collaboration, Observation of an excess of events in the search for the standard model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).

  3. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  4. CMS collaboration, J. Incandela, Stauts of the CMS SM Higgs search, CERN Public Seminar, CERN, Switzerland (2012).

  5. CMS collaboration, Observation of a new boson with a mass near 125 GeV, PAS-HIG-12-020 (2012).

  6. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  7. ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  8. CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  9. Tevatron New Physics Higgs Working Group, CDF, D0 collaboration, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  10. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, arXiv:1207.1347 [INSPIRE].

  11. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Reconstructing Higgs boson properties from the LHC and Tevatron data, JHEP 06 (2012) 117 [arXiv:1203.4254] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, arXiv:1207.1716 [INSPIRE].

  13. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, arXiv:1207.1717 [INSPIRE].

  14. D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, arXiv:1207.1718 [INSPIRE].

  15. J. Ellis and T. You, Global analysis of the higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Ellis and T. You, Global analysis of experimental constraints on a possible Higgs-like particle with mass ∼ 125 GeV, JHEP 06 (2012) 140 [arXiv:1204.0464] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, Fingerprinting Higgs suspects at the LHC, JHEP 05 (2012) 097 [arXiv:1202.3697] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Azatov, S. Chang, N. Craig and J. Galloway, Early Higgs hints for non-minimal supersymmetry, arXiv:1206.1058 [INSPIRE].

  19. Y. Bai, P. Draper and J. Shelton, Measuring the invisible Higgs width at the 7 and 8 TeV LHC, JHEP 07 (2012) 192 [arXiv:1112.4496] [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].

    Article  ADS  Google Scholar 

  21. P. Fileviez Perez, SUSY spectrum and the Higgs mass in the BLMSSM, Phys. Lett. B 711 (2012) 353 [arXiv:1201.1501] [INSPIRE].

    ADS  Google Scholar 

  22. J. Ellis, M.K. Gaillard and D.V. Nanopoulos, A historical profile of the Higgs boson, arXiv:1201.6045 [INSPIRE].

  23. C.-F. Chang, K. Cheung, Y.-C. Lin and T.-C. Yuan, Mimicking the standard model Higgs boson in UMSSM, JHEP 06 (2012) 128 [arXiv:1202.0054] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Boudjema and G.D. La Rochelle, Beyond the MSSM Higgs bosons at 125 GeV, Phys. Rev. D 86 (2012) 015018 [arXiv:1203.3141] [INSPIRE].

    ADS  Google Scholar 

  25. E. Gabrielli, K. Kannike, B. Mele, A. Racioppi and M. Raidal, Fermiophobic Higgs boson and supersymmetry, Phys. Rev. D 86 (2012) 055014 [arXiv:1204.0080] [INSPIRE].

    ADS  Google Scholar 

  26. M. Hirsch, W. Porod, L. Reichert and F. Staub, Phenomenology of the minimal supersymmetric \( \mathrm{U}{(1)_B}_{-L}\times \mathrm{U}{(1)_R} \) extension of the standard model, arXiv:1206.3516 [INSPIRE].

  27. K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY predicts: Higgs couplings, arXiv:1206.5303 [INSPIRE].

  28. M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM, arXiv:1206.5800 [INSPIRE].

  29. T. Li, J.A. Maxin, D.V. Nanopoulos and J.W. Walker, Testing no-scale F-SU(5): a 125 GeV Higgs boson and SUSY at the 8 TeV LHC, arXiv:1207.1051 [INSPIRE].

  30. E. Hardy, J. March-Russell and J. Unwin, Precision unification in λ SUSY with a 125 GeV Higgs, arXiv:1207.1435 [INSPIRE].

  31. M.R. Buckley and D. Hooper, Are there hints of light stops in recent Higgs search results?, arXiv:1207.1445 [INSPIRE].

  32. H. An, T. Liu and L.-T. Wang, 125 GeV Higgs boson, enhanced di-photon rate and gauged U(1) P Q -extended MSSM, arXiv:1207.2473 [INSPIRE].

  33. P. Athron, S. King, D. Miller, S. Moretti and R. Nevzorov, Constrained exceptional supersymmetric standard model with a Higgs near 125 GeV, arXiv:1206.5028 [INSPIRE].

  34. J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  38. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  39. M.A. Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].

    ADS  Google Scholar 

  40. Z. Kang, T. Li, T. Liu, C. Tong and J.M. Yang, A heavy SM-like Higgs and a light stop from Yukawa-deflected gauge mediation, arXiv:1203.2336 [INSPIRE].

  41. N. Okada, SuperWIMP dark matter and 125 GeV Higgs boson in the minimal GMSB, arXiv:1205.5826 [INSPIRE].

  42. N. Craig, S. Knapen, D. Shih and Y. Zhao, A complete model of low-scale gauge mediation, arXiv:1206.4086 [INSPIRE].

  43. A. Albaid, K. Babu and K. Babu, Higgs boson of mass 125 GeV in GMSB models with messenger-matter mixing, arXiv:1207.1014 [INSPIRE].

  44. J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  45. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].

    ADS  Google Scholar 

  46. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    Article  ADS  Google Scholar 

  47. O. Buchmueller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].

    ADS  Google Scholar 

  48. S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].

    ADS  Google Scholar 

  49. M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J.L. Feng, K.T. Matchev and D. Sanford, Focus point supersymmetry redux, Phys. Rev. D 85 (2012) 075007 [arXiv:1112.3021] [INSPIRE].

    ADS  Google Scholar 

  51. N. Karagiannakis, G. Lazarides and C. Pallis, Dark matter and Higgs mass in the CMSSM with Yukawa quasi-unification, J. Phys. Conf. Ser. 384 (2012) 012012 [arXiv:1201.2111] [INSPIRE].

    Article  ADS  Google Scholar 

  52. L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, arXiv:1202.1503 [INSPIRE].

  53. L. Aparicio, D. Cerdeno and L. Ibáñez, A 119–125 GeV Higgs from a string derived slice of the CMSSM, JHEP 04 (2012) 126 [arXiv:1202.0822] [INSPIRE].

    Article  ADS  Google Scholar 

  54. K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, J. Phys. Conf. Ser. 384 (2012) 012010 [arXiv:1202.2324] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Ellis and K.A. Olive, Revisiting the Higgs mass and dark matter in the CMSSM, Eur. Phys. J. C 72 (2012) 2005 [arXiv:1202.3262] [INSPIRE].

    ADS  Google Scholar 

  56. A. Fowlie et al., The CMSSM favoring new territories: the impact of new LHC limits and a 125 GeV Higgs, arXiv:1206.0264 [INSPIRE].

  57. S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, arXiv:1207.1839 [INSPIRE].

  58. U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].

    Article  ADS  Google Scholar 

  59. S. King, M. Muhlleitner and R. Nevzorov, NMSSM Higgs benchmarks near 125 GeV, Nucl. Phys. B 860 (2012) 207 [arXiv:1201.2671] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Bottino, N. Fornengo and S. Scopel, Phenomenology of light neutralinos in view of recent results at the CERN Large Hadron Collider, Phys. Rev. D 85 (2012) 095013 [arXiv:1112.5666] [INSPIRE].

    ADS  Google Scholar 

  61. J.F. Gunion, Y. Jiang and S. Kraml, The constrained NMSSM and Higgs near 125 GeV, Phys. Lett. B 710 (2012) 454 [arXiv:1201.0982] [INSPIRE].

    ADS  Google Scholar 

  62. S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  63. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    Article  ADS  Google Scholar 

  65. A. Arvanitaki and G. Villadoro, A non standard model Higgs at the LHC as a sign of naturalness, JHEP 02 (2012) 144 [arXiv:1112.4835] [INSPIRE].

    Article  ADS  Google Scholar 

  66. N. Desai, B. Mukhopadhyaya and S. Niyogi, Constraints on invisible Higgs decay in MSSM in the light of diphoton rates from the LHC, arXiv:1202.5190 [INSPIRE].

  67. L. Maiani, A. Polosa and V. Riquer, Probing minimal supersymmetry at the LHC with the Higgs boson masses, New J. Phys. 14 (2012) 073029 [arXiv:1202.5998] [INSPIRE].

    Article  ADS  Google Scholar 

  68. D. Curtin, P. Jaiswal and P. Meade, Excluding electroweak baryogenesis in the MSSM, JHEP 08 (2012) 005 [arXiv:1203.2932] [INSPIRE].

    Article  ADS  Google Scholar 

  69. N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  70. U. Ellwanger and C. Hugonie, Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale, arXiv:1203.5048 [INSPIRE].

  71. P. Lodone, Supersymmetry phenomenology beyond the MSSM after 5/fb of LHC data, Int. J. Mod. Phys. A 27 (2012) 1230010 [arXiv:1203.6227] [INSPIRE].

    ADS  Google Scholar 

  72. F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].

    Article  ADS  Google Scholar 

  73. K. Hagiwara, J.S. Lee and J. Nakamura, Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios, JHEP 10 (2012) 002 [arXiv:1207.0802] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M. Badziak, E. Dudas, M. Olechowski and S. Pokorski, Inverted sfermion mass hierarchy and the Higgs boson mass in the MSSM, JHEP 07 (2012) 155 [arXiv:1205.1675] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, arXiv:1207.1096 [INSPIRE].

  76. J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, arXiv:1207.1545 [INSPIRE].

  77. V. Barger, M. Ishida and W.-Y. Keung, Flavor-tuned SUSY Higgs bosons at the LHC: enhanced di-photon and suppressed di-τ signals of the 125 GeV Higgs, arXiv:1207.0779 [INSPIRE].

  78. G. Guo, B. Ren and X.-G. He, LHC evidence of a 126 GeV Higgs boson from H → γγ with three and four generations, arXiv:1112.3188 [INSPIRE].

  79. X.-G. He, B. Ren and J. Tandean, Hints of standard model Higgs boson at the LHC and light dark matter searches, Phys. Rev. D 85 (2012) 093019 [arXiv:1112.6364] [INSPIRE].

    ADS  Google Scholar 

  80. C. Englert, T. Plehn, M. Rauch, D. Zerwas and P.M. Zerwas, LHC: standard Higgs and hidden Higgs, Phys. Lett. B 707 (2012) 512 [arXiv:1112.3007] [INSPIRE].

    ADS  Google Scholar 

  81. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Implications of LHC searches for Higgs-portal dark matter, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299] [INSPIRE].

    ADS  Google Scholar 

  82. K. Cheung and T.-C. Yuan, Could the excess seen at 124–126 GeV be due to the Randall-Sundrum radion?, Phys. Rev. Lett. 108 (2012) 141602 [arXiv:1112.4146] [INSPIRE].

    Article  ADS  Google Scholar 

  83. B.A. Dobrescu, G.D. Kribs and A. Martin, Higgs underproduction at the LHC, Phys. Rev. D 85 (2012) 074031 [arXiv:1112.2208] [INSPIRE].

    ADS  Google Scholar 

  84. C. Cheung and Y. Nomura, Higgs descendants, Phys. Rev. D 86 (2012) 015004 [arXiv:1112.3043] [INSPIRE].

    ADS  Google Scholar 

  85. G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  86. A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II seesaw model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs doublet model in light of the standard model H → τ + τ search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].

    ADS  Google Scholar 

  88. A. Arhrib, R. Benbrik and N. Gaur, H → γγ in inert Higgs doublet model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].

    ADS  Google Scholar 

  89. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  90. P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  91. B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].

    Article  ADS  Google Scholar 

  92. E. Gabrielli, B. Mele and M. Raidal, Has a fermiophobic Higgs boson been detected at the LHC?, Phys. Lett. B 716 (2012) 322 [arXiv:1202.1796] [INSPIRE].

    ADS  Google Scholar 

  93. E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a vectophobic two-Higgs-doublet-model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].

    ADS  Google Scholar 

  94. A. Falkowski, S. Rychkov and A. Urbano, What if the Higgs couplings to W and Z bosons are larger than in the standard model?, JHEP 04 (2012) 073 [arXiv:1202.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  95. T. Li, X. Wan, Y.-k. Wang and S.-h. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to fermiophobic, JHEP 09 (2012) 086 [arXiv:1203.5083] [INSPIRE].

    Article  ADS  Google Scholar 

  96. N. Chen and H.-J. He, LHC signatures of two-Higgs-doublets with fourth family, JHEP 04 (2012) 062 [arXiv:1202.3072] [INSPIRE].

    Article  ADS  Google Scholar 

  97. P. Draper and D. McKeen, Diphotons from tetraphotons in the decay of a 125 GeV Higgs at the LHC, Phys. Rev. D 85 (2012) 115023 [arXiv:1204.1061] [INSPIRE].

    ADS  Google Scholar 

  98. L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM, arXiv:1205.6569 [INSPIRE].

  99. L. Wang and X.-F. Han, The recent Higgs boson data and Higgs triplet model with vector-like quark, arXiv:1206.1673 [INSPIRE].

  100. J. Chang, K. Cheung, P.-Y. Tseng and T.-C. Yuan, Distinguishing various models of the 125 GeV boson in vector boson fusion, arXiv:1206.5853 [INSPIRE].

  101. H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 125 GeV Higgs boson, arXiv:1207.1083 [INSPIRE].

  102. P.H. Chankowski, J.R. Ellis and S. Pokorski, The fine tuning price of LEP, Phys. Lett. B 423 (1998) 327 [hep-ph/9712234] [INSPIRE].

    ADS  Google Scholar 

  103. R. Barbieri and A. Strumia, About the fine tuning price of LEP, Phys. Lett. B 433 (1998) 63 [hep-ph/9801353] [INSPIRE].

    ADS  Google Scholar 

  104. G.L. Kane and S. King, Naturalness implications of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374] [INSPIRE].

    ADS  Google Scholar 

  105. J.-J. Cao, Z. Heng, J.M. Yang and J. Zhu, Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC?, JHEP 06 (2012) 145 [arXiv:1203.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  106. J. Cao, Z. Heng, T. Liu and J.M. Yang, Di-photon Higgs signal at the LHC: a comparative study for different supersymmetric models, Phys. Lett. B 703 (2011) 462 [arXiv:1103.0631] [INSPIRE].

    ADS  Google Scholar 

  107. LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    Article  ADS  Google Scholar 

  108. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, arXiv:1207.5988 [INSPIRE].

  109. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Rev. Lett. 108 (2012) 111803 [arXiv:1202.1414] [INSPIRE].

    Article  ADS  Google Scholar 

  110. ATLAS collaboration, G. Aad et al., Search for the standard model Higgs boson in the decay channel \( H\to Z{Z^{(*) }}\to 4l \) with 4.8 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].

    ADS  Google Scholar 

  111. CMS collaboration, S. Chatrchyan et al., Search for a Higgs boson in the decay channel \( H\to Z{Z^{(*) }}\to q\bar{q}{l^{-}}{l^{+}} \) in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 036 [arXiv:1202.1416] [INSPIRE].

    ADS  Google Scholar 

  112. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].

    ADS  Google Scholar 

  113. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    ADS  Google Scholar 

  114. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the decay channel HZZ → 4 leptons in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].

    Article  ADS  Google Scholar 

  115. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the HZZ →2l2ν channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2012) 040 [arXiv:1202.3478] [INSPIRE].

    Article  ADS  Google Scholar 

  116. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson in the HZZllττ decay channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 03 (2012) 081 [arXiv:1202.3617] [INSPIRE].

    Article  ADS  Google Scholar 

  117. CMS collaboration, S. Chatrchyan et al., Search for neutral Higgs bosons decaying to τ pairs in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

    ADS  Google Scholar 

  118. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 284 [arXiv:1202.4195] [INSPIRE].

    ADS  Google Scholar 

  119. H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [INSPIRE].

    Article  ADS  Google Scholar 

  120. J. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567–569] [INSPIRE].

    Article  ADS  Google Scholar 

  121. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    Article  ADS  Google Scholar 

  122. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  123. M. Maniatis, The next-to-minimal supersymmetric extension of the standard model reviewed, Int. J. Mod. Phys. A 25 (2010) 3505 [arXiv:0906.0777] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  124. M. Bastero-Gil, C. Hugonie, S. King, D. Roy and S. Vempati, Does LEP prefer the NMSSM?, Phys. Lett. B 489 (2000) 359 [hep-ph/0006198] [INSPIRE].

    ADS  Google Scholar 

  125. A. Delgado, C. Kolda, J.P. Olson and A. de la Puente, Solving the little hierarchy problem with a singlet and explicit μ terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282] [INSPIRE].

    Article  ADS  Google Scholar 

  126. U. Ellwanger, G. Espitalier-Noel and C. Hugonie, Naturalness and fine tuning in the NMSSM: implications of early LHC results, JHEP 09 (2011) 105 [arXiv:1107.2472] [INSPIRE].

    Article  ADS  Google Scholar 

  127. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284] [INSPIRE].

    Article  ADS  Google Scholar 

  128. P. Fayet, Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    Article  ADS  Google Scholar 

  129. C. Panagiotakopoulos and K. Tamvakis, Stabilized NMSSM without domain walls, Phys. Lett. B 446 (1999) 224 [hep-ph/9809475] [INSPIRE].

    ADS  Google Scholar 

  130. C. Panagiotakopoulos and K. Tamvakis, New minimal extension of MSSM, Phys. Lett. B 469 (1999) 145 [hep-ph/9908351] [INSPIRE].

    ADS  Google Scholar 

  131. C. Panagiotakopoulos and A. Pilaftsis, Higgs scalars in the minimal nonminimal supersymmetric standard model, Phys. Rev. D 63 (2001) 055003 [hep-ph/0008268] [INSPIRE].

    ADS  Google Scholar 

  132. A. Dedes, C. Hugonie, S. Moretti and K. Tamvakis, Phenomenology of a new minimal supersymmetric extension of the standard model, Phys. Rev. D 63 (2001) 055009 [hep-ph/0009125] [INSPIRE].

    ADS  Google Scholar 

  133. A. Menon, D. Morrissey and C. Wagner, Electroweak baryogenesis and dark matter in the NMSSM, Phys. Rev. D 70 (2004) 035005 [hep-ph/0404184] [INSPIRE].

    ADS  Google Scholar 

  134. V. Barger, P. Langacker and H.-S. Lee, Lightest neutralino in extensions of the MSSM, Phys. Lett. B 630 (2005) 85 [hep-ph/0508027] [INSPIRE].

    ADS  Google Scholar 

  135. C. Balázs, M.S. Carena, A. Freitas and C. Wagner, Phenomenology of the NMSSM from colliders to cosmology, JHEP 06 (2007) 066 [arXiv:0705.0431] [INSPIRE].

    Article  ADS  Google Scholar 

  136. K.S. Jeong, Y. Shoji and M. Yamaguchi, Peccei-Quinn invariant extension of the NMSSM, JHEP 04 (2012) 022 [arXiv:1112.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  137. K.S. Jeong, Y. Shoji and M. Yamaguchi, Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM, JHEP 09 (2012) 007 [arXiv:1205.2486] [INSPIRE].

    Article  ADS  Google Scholar 

  138. J. Cao, H.E. Logan and J.M. Yang, Experimental constraints on NMSSM and implications on its phenomenology, Phys. Rev. D 79 (2009) 091701 [arXiv:0901.1437] [INSPIRE].

    ADS  Google Scholar 

  139. U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: a Fortran code for the Higgs masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215] [INSPIRE].

    Article  ADS  Google Scholar 

  140. U. Ellwanger and C. Hugonie, NMHDECAY 2.0: an updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175 (2006) 290 [hep-ph/0508022] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  141. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  142. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    Article  ADS  Google Scholar 

  143. J. Cao, K.-i. Hikasa, W. Wang, J.M. Yang and L.-X. Yu, SUSY dark matter in light of CDMS II results: a comparative study for different models, JHEP 07 (2010) 044 [arXiv:1005.0761] [INSPIRE].

    Article  ADS  Google Scholar 

  144. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].

    Article  ADS  Google Scholar 

  145. S. Heinemeyer, W. Hollik and G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343 [hep-ph/9812472] [INSPIRE].

    ADS  Google Scholar 

  146. S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  147. M. Frank et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, JHEP 02 (2007) 047 [hep-ph/0611326] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Min Yang.

Additional information

ArXiv ePrint: 1207.3698

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Heng, Z., Yang, J.M. et al. Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data. J. High Energ. Phys. 2012, 79 (2012). https://doi.org/10.1007/JHEP10(2012)079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2012)079

Keywords

Navigation