Skip to main content
Log in

Single-scale natural SUSY

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the prospects for natural SUSY models consistent with current data. Recent constraints make the standard paradigm unnatural so we consider what could be a minimal extension consistent with what we now know. The most promising such scenarios extend the MSSM with new tree-level Higgs interactions that can lift its mass to at least 125 GeV and also allow for flavor-dependent soft terms so that the third generation squarks are lighter than current bounds on the first and second generation squarks. We argue that a common feature of almost all such models is the need for a new scale near 10 TeV, such as a scale of Higgsing or confinement of a new gauge group. We consider the question whether such a model can naturally derive from a single mass scale associated with supersymmetry breaking. Most such models simply postulate new scales, leaving their proximity to the scale of MSSM soft terms a mystery. This coincidence problem may be thought of as a mild tuning, analogous to the usual μ problem. We find that a single mass scale origin is challenging, but suggest that a more natural origin for such a new dynamical scale is the gravitino mass, m 3/2, in theories where the MSSM soft terms are a loop factor below m 3/2. As an example, we build a variant of the NMSSM where the singlet S is composite, and the strong dynamics leading to compositeness is triggered by masses of order m 3/2 for some fields. Our focus is the Higgs sector, but our model is compatible with a light stop (either with the first and second generation squarks heavy, or with R-parity violation or another mechanism to hide them from current searches). All the interesting low-energy mass scales, including linear terms for S playing a key role in EWSB, arise dynamically from the single scale m 3/2. However, numerical coefficients from RG effects and wavefunction factors in an extra dimension complicate the otherwise simple story.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408].

    ADS  Google Scholar 

  2. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488].

    ADS  Google Scholar 

  3. CMS collaboration, Searches for the Standard Model Higgs Boson at CMS, arXiv:1205.2907.

  4. ATLAS collaboration, Searches for the Standard Model Higgs Boson with the ATLAS Detector, arXiv:1205.4629.

  5. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214].

    ADS  Google Scholar 

  6. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235].

    ADS  Google Scholar 

  7. L. Randall and R. Sundrum, Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].

    MathSciNet  ADS  MATH  Google Scholar 

  8. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Google Scholar 

  9. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984)187 [INSPIRE].

    ADS  Google Scholar 

  10. H. Georgi, D.B. Kaplan and P. Galison, Calculation Of The Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    ADS  Google Scholar 

  11. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259].

    ADS  Google Scholar 

  12. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089].

    ADS  Google Scholar 

  13. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900].

    ADS  Google Scholar 

  14. B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 INSPIRE.

    ADS  Google Scholar 

  15. W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson, Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102 (2009)101601 INSPIRE].

    ADS  Google Scholar 

  16. ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, Phys. Lett. B 710 (2012) 67 [arXiv:1109.6572].

    ADS  Google Scholar 

  17. CMS collaboration, Search for supersymmetry in all-hadronic events with missing energy, CMS-PAS-SUS-11-004 (2011).

  18. ATLAS collaboration, Search for squarks and gluinos using final states with jets and missing transverse momentum with the atlas detector in \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-2012-033 (2012).

  19. CMS collaboration, Search for new physics in the multijets + missing transverse energy final state in 7 TeV proton-proton collisions, CMS-PAS-SUS-12-011 (2012).

  20. ATLAS collaboration, Search for gluinos in events with two same sign leptons, jets and missing transverse momentum, ATLAS-CONF-2012-004 (2012).

  21. CMS collaboration, Search for new physics in events with same-sign dileptons and b-tagged jets in pp collisions at sqrt \( \sqrt{s}=7 \) TeV, JHEP 08 (2012) 110 [arXiv:1205.3933].

    ADS  Google Scholar 

  22. CMS collaboration, Search for supersymmetry in events with a single lepton and jets using templates, CMS-PAS-SUS-11-027 (2011).

  23. ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in L = 4.7 f b −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, ATLAS-CONF-12-037 (2012).

  24. ATLAS collaboration, Search for gluino-mediated scalar top and bottom quark production in final states with missing transverse energy and at least three b-jets with the ATLAS Detector, ATLAS-CONF-2012-058 (2012).

  25. ATLAS collaboration, Search for gluino pair production in final states with missing transverse momentum and at least three b-jets using 12.8 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector,ATLAS-CONF-2012-145(2012).

  26. CMS collaboration, Search for supersymmetry in hadronic final states with missing transverse energy using the variables α T and b-quark multiplicity in pp collisions at 8 TeV, arXiv:1303.2985.

  27. CMS collaboration, Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable α T , JHEP 01 (2013) 77 [arXiv:1210.8115].

    ADS  Google Scholar 

  28. CMS collaboration, Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at \( \sqrt{s}=8 \) TeV, CMS-PAS-SUS-12-023 (2012).

  29. ATLAS collaboration, Search for direct top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions using 13.0 fb −1 of ATLAS data, ATLAS-CONF-2012-166 (2012).

  30. ATLAS collaboration, Search for direct stop production in events with missing transverse momentum and two b-jets using 12.8 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-001 (2013).

  31. ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb −1 of proton-proton collisions at \( \sqrt{s}=8 \) TeV,ATLAS-CONF-2013-007(2013).

  32. ATLAS collaboration, Search for direct production of the top squark in the all-hadronic ttbar + etmiss final state in 21 fb −1 of p-pcollisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-024 (2013).

  33. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 35 [arXiv:1110.6926].

    ADS  Google Scholar 

  34. C. Brust, A. Katz, S. Lawrence and R. Sundrum, SUSY, the Third Generation and the LHC, JHEP 03 (2012) 103 [arXiv:1110.6670].

    ADS  Google Scholar 

  35. L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 125 GeV, JHEP 04 (2012)131 [arXiv:1112.2703].

    ADS  Google Scholar 

  36. H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for the LHC supersymmetry and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017].

    ADS  Google Scholar 

  37. S. Heinemeyer, O. St al and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026].

    ADS  Google Scholar 

  38. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028].

    ADS  Google Scholar 

  39. P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs boson for the MSSM and low-scale supersymmetry breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068].

    ADS  Google Scholar 

  40. M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336].

    ADS  Google Scholar 

  41. S. Dimopoulos and G.F. Giudice, Naturalness constraints in supersymmetric theories with non-universal soft terms, Phys. Lett. B 357 (1995) 573 [hep-ph/9507282].

    ADS  Google Scholar 

  42. A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more Minimal Supersymmetric Standard Model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394].

    ADS  Google Scholar 

  43. R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63 [INSPIRE].

    ADS  Google Scholar 

  44. R. Barbier et al., R-Parity-violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039].

    ADS  Google Scholar 

  45. C. Csáki, Y. Grossman and B. Heidenreich, Minimal flavor violation supersymmetry: A natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239].

    ADS  Google Scholar 

  46. P.W. Graham, D.E. Kaplan, S. Rajendran and P. Saraswat, Displaced Supersymmetry, JHEP 07 (2012) 149 [arXiv:1204.6038].

    ADS  Google Scholar 

  47. S. Chang, C. Kilic and R. Mahbubani, New fat Higgs: Increasing the MSSM Higgs mass with natural gauge unification, Phys. Rev. D 71 (2005) 015003 [hep-ph/0405267].

    ADS  Google Scholar 

  48. P. Lodone, Supersymmetry Phenomenology Beyond the MSSM after 5/fb of LHC Data, Int. J. Mod. Phys. A 27 (2012) 30010 [arXiv:1203.6227].

    ADS  Google Scholar 

  49. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 INSPIRE.

    ADS  Google Scholar 

  50. R. Barbieri, M. Frigeni and F. Caravaglios, The Supersymmetric Higgs for heavy superpartners, Phys. Lett. B 258 (1991) 167 INSPIRE].

    ADS  Google Scholar 

  51. M. Carena and H.E. Haber, Higgs Boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209].

    ADS  Google Scholar 

  52. K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and the little hierarchy problem in an extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055].

    ADS  Google Scholar 

  53. S.P. Martin, Extra vectorlike matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732].

    ADS  Google Scholar 

  54. P.W. Graham, A. Ismail, S. Rajendran and P. Saraswat, Little solution to the little hierarchy problem: A vectorlike generation, Phys. Rev. D 81 (2010) 055016 [arXiv:0910.3020].

    ADS  Google Scholar 

  55. J.A. Casas, J. Ramón Espinosa and I. Hidalgo, The MSSM fine tuning problem: a way out, JHEP 01 (2004) 008 [hep-ph/0310137].

    ADS  Google Scholar 

  56. H.E. Haber and M. Sher, Higgs Mass Bound In E(6) Based Supersymmetric Theories, Phys. Rev. D 35 (1987) 2206 [INSPIRE].

    ADS  Google Scholar 

  57. M. Drees, Comment onHiggs Boson Mass Bound In E(6) Based Supersymmetric Theories’, Phys. Rev. D 35 (1987) 2910 [INSPIRE].

    ADS  Google Scholar 

  58. L. Randall, talk at The 10th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY02), Hamburg Germany, 17–23 June 2002, video at http://www.desy.de/susy02/.

  59. P. Batra, A. Delgado, D.E. Kaplan and T.M.P. Tait, The Higgs Mass Bound in Gauge Extensions of the Minimal Supersymmetric Standard Model, JHEP 02 (2004) 043 [hep-ph/0309149].

    ADS  Google Scholar 

  60. A. Maloney, A. Pierce and J.G. Wacker, D-terms, unification and the Higgs mass, JHEP 06 (2006) 034 [hep-ph/0409127].

    MathSciNet  ADS  Google Scholar 

  61. N. Craig, D. Green and A. Katz, (De)constructing a natural and flavorful supersymmetric Standard Model, JHEP 07 (2011) 045 [arXiv:1103.3708].

    ADS  Google Scholar 

  62. M. Drees, Supersymmetric Models with Extended Higgs Sector, Int. J. Mod. Phys. A 4 (1989)3635 [INSPIRE].

    ADS  Google Scholar 

  63. J.R. Espinosa and M. Quiros, On Higgs boson masses in nonminimal supersymmetric standard models, Phys. Lett. B 279 (1992) 92.

    ADS  Google Scholar 

  64. U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785].

    MathSciNet  ADS  Google Scholar 

  65. J. Bagger and E. Poppitz, Destabilizing divergences in supergravity-coupled supersymmetric theories, Phys. Rev. Lett. 71 (1993) 2380 [hep-ph/9307317].

    ADS  Google Scholar 

  66. J. Bagger, E. Poppitz and L. Randall, Destabilizing divergences in supergravity theories at two loops, Nucl. Phys. B 445 (1995) 59 [hep-ph/9505244].

    MathSciNet  ADS  Google Scholar 

  67. S.A. Abel, S. Sarkar and P.L. White, On the cosmological domain wall problem for the minimally extended supersymmetric standard model, Nucl. Phys. B 454 (1995) 663 [hep-ph/9506359].

    ADS  Google Scholar 

  68. C. Panagiotakopoulos, New minimal extension of MSSM, Phys. Lett. B 469 (1999) 145 [hep-ph/9908351].

    MathSciNet  ADS  Google Scholar 

  69. H.M. Lee et al., Discrete R symmetries for the MSSM and its singlet extensions, Nucl. Phys. B 850 (2011) 1 [arXiv:1102.3595].

    ADS  Google Scholar 

  70. G.G. Ross and K. Schmidt-Hoberg, The fine-tuning of the generalised NMSSM, Nucl. Phys. B 862 (2012) 710 [arXiv:1108.1284].

    ADS  Google Scholar 

  71. G.G. Ross, K. Schmidt-Hoberg and F. Staub, The generalised NMSSM at one loop: fine tuning and phenomenology, JHEP 08 (2012) 074 [arXiv:1205.1509].

    ADS  Google Scholar 

  72. M. Cvetič, D.A. Demir, J.R. Espinosa, L. Everett and P. Langacker, Electroweak breaking and the μ problem in supergravity models with an additional U(1), Phys. Rev. D 56 (1997) 2861 [hep-ph/9703317].

    ADS  Google Scholar 

  73. P. Langacker, N. Polonsky and J. Wang, Low-energy solution to the μ problem in gauge mediation, Phys. Rev. D 60 (1999) 115005 [hep-ph/9905252].

    ADS  Google Scholar 

  74. R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a light Higgs boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332].

    ADS  Google Scholar 

  75. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Pappadopulo, A non standard supersymmetric spectrum, JHEP 08 (2010) 024 [arXiv:1004.2256].

    ADS  Google Scholar 

  76. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, Minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349].

    ADS  Google Scholar 

  77. A. Delgado and T.M.P. Tait, A fat Higgs with a fat top, JHEP 07 (2005) 023 [hep-ph/0504224].

    MathSciNet  ADS  Google Scholar 

  78. N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, JHEP 11 (2011)145 [arXiv:1106.2164].

    ADS  Google Scholar 

  79. C. Csáki, Y. Shirman and J. Terning, Seiberg dual for the MSSM: Partially composite W and Z, Phys. Rev. D 84 (2011) 095011 [arXiv:1106.3074].

    ADS  Google Scholar 

  80. C. Csáki, L. Randall and J. Terning, Light stops from Seiberg duality, Phys. Rev. D 86 (2012)075009 [arXiv:1201.1293].

    ADS  Google Scholar 

  81. A. Delgado, C. Kolda, J.P. Olson and A. de La Puente, Solving the Little Hierarchy Problem with a Singlet and Explicit μ Terms, Phys. Rev. Lett. 105 (2010) 091802 [arXiv:1005.1282].

    ADS  Google Scholar 

  82. A. Delgado, C. Kolda and A. de la Puente, Solving the little hierarchy problem with a light singlet and supersymmetric mass terms, Phys. Lett. B 710 (2012) 460 [arXiv:1111.4008].

    ADS  Google Scholar 

  83. M. Dine, N. Seiberg and S. Thomas, Higgs physics as a window beyond the MSSM, Phys. Rev. D 76 (2007) 095004 [arXiv:0707.0005].

    ADS  Google Scholar 

  84. T. Gherghetta and A. Pomarol, The standard model partly supersymmetric, Phys. Rev. D 67 (2003)085018 [hep-ph/0302001].

    MathSciNet  ADS  Google Scholar 

  85. R. Sundrum, SUSY splits, but then returns, JHEP 01 (2011) 062 [arXiv:0909.5430].

    MathSciNet  ADS  Google Scholar 

  86. K. Agashe, A. Azatov, A. Katz and D. Kim, Improving the tunings of the MSSM by adding triplets and singlet, Phys. Rev. D 84 (2011) 115024 [arXiv:1109.2842].

    ADS  Google Scholar 

  87. J.A. Evans, J. Galloway, M.A. Luty and R.A. Tacchi, Flavor in minimal conformal technicolor, JHEP 04 (2011) 003 [arXiv:1012.4808].

    ADS  Google Scholar 

  88. A. Azatov, J. Galloway and M.A. Luty, Superconformal Technicolor, Phys. Rev. Lett. 108 (2012)041802 [arXiv:1106.3346].

    ADS  Google Scholar 

  89. A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: Models and phenomenology, Phys. Rev. D 85 (2012) 015018 [arXiv:1106.4815].

    ADS  Google Scholar 

  90. T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697].

    ADS  Google Scholar 

  91. J.J. Heckman, P. Kumar, C. Vafa and B. Wecht, Electroweak symmetry breaking in the DSSM, JHEP 01 (2012) 156 [arXiv:1108.3849].

    MathSciNet  ADS  Google Scholar 

  92. R. Kitano, M.A. Luty and Y. Nakai, Partially composite Higgs in supersymmetry, JHEP 08 (2012)111 [arXiv:1206.4053].

    ADS  Google Scholar 

  93. N. Arkani-Hamed, M.A. Luty and J. Terning, Composite quarks and leptons from dynamical supersymmetry breaking without messengers, Phys. Rev. D 58 (1998) 015004 [hep-ph/9712389].

    ADS  Google Scholar 

  94. M.A. Luty and J. Terning, Improved single sector supersymmetry breaking, Phys. Rev. D 62 (2000)075006 [hep-ph/9812290].

    ADS  Google Scholar 

  95. S. Franco and S. Kachru, Single-sector supersymmetry breaking in supersymmetric QCD, Phys. Rev. D 81 (2010) 095020 [arXiv:0907.2689].

    ADS  Google Scholar 

  96. N. Craig, R. Essig, S. Franco, S. Kachru and G. Torroba, Dynamical supersymmetry breaking, with flavor, Phys. Rev. D 81 (2010) 075015 [arXiv:0911.2467].

    ADS  Google Scholar 

  97. S. Schäfer-Nameki, C. Tamarit and G. Torroba, A hybrid Higgs, JHEP 03 (2011) 113 [arXiv:1005.0841].

    ADS  Google Scholar 

  98. G. Larsen, Y. Nomura and H.L.L. Roberts, Supersymmetry with light stops, JHEP 06 (2012)032 [arXiv:1202.6339].

    ADS  Google Scholar 

  99. K. Agashe and M. Graesser, Improving the fine tuning in models of low energy gauge mediated supersymmetry breaking, Nucl. Phys. B 507 (1997) 3 [hep-ph/9704206].

    ADS  Google Scholar 

  100. A. de Gouvêa, A. Friedland and H. Murayama, Next-to-minimal supersymmetric standard model with the gauge mediation of supersymmetry breaking, Phys. Rev. D 57 (1998) 5676 [hep-ph/9711264].

    ADS  Google Scholar 

  101. D.E. Morrissey and A. Pierce, Modified Higgs boson phenomenology from gauge or gaugino mediation in the next-to-minimal supersymmetric standard model, Phys. Rev. D 78 (2008) 075029 [arXiv:0807.2259].

    ADS  Google Scholar 

  102. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999)79 [hep-th/9810155].

    MathSciNet  ADS  Google Scholar 

  103. G.F. Giudice, R. Rattazzi, M.A. Luty and H. Murayama, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442].

    ADS  Google Scholar 

  104. G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59.

    ADS  Google Scholar 

  105. B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model-independent properties and cosmological implications of the dilaton and moduli sectors of 4D strings, Phys. Lett. B 318 (1993)447 [hep-ph/9308325].

    ADS  Google Scholar 

  106. L. Randall and S. Thomas, Solving the cosmological moduli problem with weak scale inflation, Nucl. Phys. B 449 (1995) 229 [hep-ph/9407248].

    ADS  Google Scholar 

  107. B.S. Acharya, K. Bobkov, G. Kane, J. Shao, S. Watson and P. Kumar, Non-thermal dark matter and the moduli problem in string frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863].

    ADS  Google Scholar 

  108. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527].

    ADS  Google Scholar 

  109. A. de Gouvêa, T. Moroi and H. Murayama, Cosmology of supersymmetric models with low-energy gauge mediation, Phys. Rev. D 56 (1997) 1281 [hep-ph/9701244].

    ADS  Google Scholar 

  110. M. Kawasaki and T. Yanagida, Constraint on cosmic density of the string moduli field in gauge-mediated supersymmetry-breaking theories, Phys. Lett. B 399 (1997) 45 [hep-ph/9701346].

    MathSciNet  ADS  Google Scholar 

  111. J. Fan, M. Reece and L.-T. Wang, Mitigating moduli messes in low-scale SUSY breaking, JHEP 09 (2011) 126 [arXiv:1106.6044].

    ADS  Google Scholar 

  112. A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl. Phys. B 466 (1996) 3 [hep-ph/9507462].

    ADS  Google Scholar 

  113. G. Dvali and A. Pomarol, Anomalous U(1) as a Mediator of Supersymmetry Breaking, Phys. Rev. Lett. 77 (1996) 3728 [hep-ph/9607383].

    ADS  Google Scholar 

  114. N. Craig, M. McCullough and J. Thaler, Flavor mediation delivers natural SUSY, JHEP 06 (2012)046 [arXiv:1203.1622].

    ADS  Google Scholar 

  115. M. Gabella, T. Gherghetta and J. Giedt, Gravity dual and CERN LHC study of single-sector supersymmetry breaking, Phys. Rev. D 76 (2007) 055001 [arXiv:0704.3571].

    ADS  Google Scholar 

  116. T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171].

    ADS  Google Scholar 

  117. R. Auzzi, A. Giveon and S.B. Gudnason, Flavor of quiver-like realizations of effective supersymmetry, JHEP 02 (2012) 069 [arXiv:1112.6261].

    ADS  Google Scholar 

  118. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572].

    ADS  Google Scholar 

  119. T. Cohen, A. Hook and G. Torroba, An attractor for natural supersymmetry, Phys. Rev. D 86 (2012)115005 [arXiv:1204.1337].

    ADS  Google Scholar 

  120. N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem be solved by decoupling?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259].

    ADS  Google Scholar 

  121. C. Tamarit, Decoupling heavy sparticles in hierarchical SUSY scenarios: Two-loop Renormalization Group equations, arXiv:1204.2292.

  122. C. Tamarit, Decoupling heavy sparticles in Effective SUSY scenarios: unification, Higgs masses and tachyon bounds, JHEP 06 (2012) 80 [arXiv:1204.2645].

    ADS  Google Scholar 

  123. C. Tamarit, Large, negative threshold contributions to light soft masses in models with effective supersymmetry, Phys. Rev. D 86 (2012) 115003 [arXiv:1206.6140].

    ADS  Google Scholar 

  124. G.F. Giudice, M. Nardecchia and A. Romanino, Hierarchical soft terms and flavor physics, Nucl. Phys. B 813 (2009) 156 [arXiv:0812.3610].

    ADS  Google Scholar 

  125. R. Barbieri, E. Bertuzzo, M. Farina, P. Lodone and D. Zhuridov, Minimal flavour violation with hierarchical squark masses, JHEP 12 (2010) 070 [arXiv:1011.0730].

    ADS  Google Scholar 

  126. R. Barbieri, P. Lodone and D.M. Straub, CP violation in supersymmetry with Effective Minimal Flavour Violation, JHEP 05 (2011) 049 [arXiv:1102.0726].

    ADS  Google Scholar 

  127. R. Barbieri, G. Isidori, J. Jones-Pérez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296].

    ADS  Google Scholar 

  128. J.P. Conlon, Mirror mediation, JHEP 03 (2008) 025 [arXiv:0710.0873].

    MathSciNet  ADS  Google Scholar 

  129. K. Kadota, G. Kane, J. Kersten and L. Velasco-Sevilla, Flavour issues for string-motivated heavy scalar spectra with a low gluino mass: the G 2 -MSSM case, Eur. Phys. J. C 72 (2012) 2004 [arXiv:1107.3105].

    ADS  Google Scholar 

  130. G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480.

    ADS  Google Scholar 

  131. M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235].

    ADS  Google Scholar 

  132. A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4π’s in strongly coupled supersymmetry, Phys. Lett. B 412 (1997) 301 [hep-ph/9706275].

    ADS  Google Scholar 

  133. K. Intriligator and N. Seiberg, Duality, monopoles, dyons, confinement and oblique confinement in supersymmetric SO(N c ) gauge theories, Nucl. Phys. B 444 (1995) 125 [hep-th/9503179].

    MathSciNet  ADS  Google Scholar 

  134. T.S. Roy and M. Schmaltz, Hidden solution to the μ/B μ problem in gauge mediation, Phys. Rev. D 77 (2008) 095008 [arXiv:0708.3593].

    ADS  Google Scholar 

  135. H. Murayama, Y. Nomura and D. Poland, More visible effects of the hidden sector, Phys. Rev. D 77 (2008) 015005 [arXiv:0709.0775].

    ADS  Google Scholar 

  136. J. Kersten and L. Velasco-Sevilla, Flavor constraints on scenarios with two or three heavy squark generations, Eur. Phys. J. C 73 (2013) 2405 [arXiv:1207.3016].

    ADS  Google Scholar 

  137. F. Mescia and J. Virto, Natural supersymmetry and kaon mixing in view of recent results from lattice QCD, Phys. Rev. D 86 (2012) 095004 [arXiv:1208.0534].

    ADS  Google Scholar 

  138. R. Barbieri, G. Dvali and L.J. Hall, Predictions from a U(2) flavour symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388].

    ADS  Google Scholar 

  139. G. Blankenburg and J. Jones-Pérez, RGE behavior of SUSY with a U(2)3 symmetry, Eur. Phys. J. C 73 (2013) 2289 [arXiv:1210.4561].

    ADS  Google Scholar 

  140. M.J. Strassler, Possible Effects of a Hidden Valley on Supersymmetric Phenomenology, hep-ph/0607160.

  141. N. Arkani-Hamed and N. Weiner, LHC signals for a SuperUnified theory of Dark Matter, JHEP 012 (2008) 104 [arXiv:0810.0714].

    ADS  Google Scholar 

  142. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283].

    ADS  Google Scholar 

  143. J. Fan, M. Reece and J.T. Ruderman, Stealth supersymmetry, JHEP 11 (2011) 012 [arXiv:1105.5135].

    ADS  Google Scholar 

  144. M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996)415 [hep-th/9605149].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Reece.

Additional information

ArXiv ePrint: 1206.6540

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, L., Reece, M. Single-scale natural SUSY. J. High Energ. Phys. 2013, 88 (2013). https://doi.org/10.1007/JHEP08(2013)088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)088

Keywords

Navigation