Skip to main content

Molecular Approaches for Harvesting Natural Diversity for Crop Improvement

  • Chapter
  • First Online:
Rediscovery of Genetic and Genomic Resources for Future Food Security

Abstract

The evolution of new species revolves around the natural as well as induced genetic variation created through revolutionary and conservative forces. Evolution and domestication are the two important phenomenon which occurred in nature, while domestication acts as a signature of evolution for harnessing the important diversification traits in crop plants which plays an important role in global food security target through crop improvement. Conservation of natural genetic diversity is the utmost importance for tackling future biotic and abiotic threats for achieving global food and nutritional security. To feed the approximately 10 billion world population by 2050, it is necessary to increase the yield of staple crops up to 70–110%. Therefore, utilization of natural genetic diversity present in the form of wild relatives (CWR), landraces, and modern cultivars is indispensable for achieving food security which is of prime importance for crop improvement programs. Crop genetic resources with a broad genetic base are the valuable assets in crop plants which can be utilized through base-broadening approaches such as pre-breeding and core and mini-core collection. Besides these, a wide array of molecular approaches is available for exploitation and harnessing of natural diversity for achieving higher genetic gains for future food and nutritional security. Through this chapter, we have tried to discuss the domestication events with respect to genetic architecture in crop plants during the course of evolution, crop improvement for food and nutritional security, role of crop genetic resources and their importance, genetic bottlenecks responsible for narrowing down of genetic diversity, significance of conservation of natural variation, and base-broadening conventional approaches. Various molecular approaches (forward and reverse genetics) with genetic modification, genome editing, and sequencing methodologies for harnessing the natural variation for maximization of genetic gain and future scope of natural diversity from plant to crop with three Bs (biotechnology/biodiversity/biomimicry) and optimistic approach of conservation of diversity for future sustainable crop improvement are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFLPs:

Amplified fragment length polymorphisms

AM:

Association mapping

AMPRIL:

Arabidopsis multiparent RIL

ATI:

Accelerated Trait Introgression

BACs:

Bacterial artificial chromosomes

BCP:

Biofortification Challenge Program

BILs:

Backcross inbred lines

Bt :

Bacillus thuringiensis

CBD:

Convention on Biological Diversity

CC:

Core collection

CGD:

Crop genetic diversity

CGRs:

Crop genetic resources

CGIAR:

Consultative Group for International Agricultural Research

CIAT:

International Center for Tropical Agriculture

CIFOR:

Center for International Forestry Research

CIMMYT:

International Maize and Wheat Improvement Center

CIP:

International Potato Center

CO2:

Carbon dioxide

CRISPR-cas9:

Clustered regularly interspaced short palindromic repeats-associated protein 9

CSSLS:

Chromosome segment substitution lines

CWR:

Crop wild relatives

DArT:

Diversity array technology

DH:

Doubled haploid

DHPLC:

Denaturing high-performance liquid chromatography

DNA:

Deoxyribonucleic acid

DS:

Domestication syndrome

EST:

Expressed sequence tag

FAO:

Food and agriculture organization

GDP:

Gross domestic product

GBS:

Genotyping by sequencing

GC:

Gateway cloning

GEBV:

Genomic estimated breeding value

GM:

Genetic modification

GMOs:

Genetically modified organisms

GS:

Genome selection

GWAS:

Genome-wide association studies

GWE:

Genome-wide editing

GWP:

Genome-wide prediction

HDB:

Homology-directed recombination

HYVs:

High-yielding varieties

IAEA:

International Atomic Energy Agency

IARI:

Indian Agricultural Research Institute

IBP:

International Biological Program

ICARDA:

International Center for Agricultural Research in the Dry Areas

ICRAF:

International Council for Research in Agroforestry

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

IFPRI:

International Food Policy Research Institute

IHF:

Integration Host Factor

IITA:

International Institute of Tropical Agriculture

ILRI:

International Livestock Research Institute

IPCC:

Intergovernmental Panel on Climate Change

IBPGR:

International Board for Plant Genetic Resources

ICN:

International Conference on Nutrition

ILO:

International Labour Organization

IME:

Institution of Mechanical Engineers

INIBAP:

International Network for the Improvement of Banana and Plantain

IRRI:

International Rice Research Institute

ITPGRFA:

International Undertaking on Plant Genetic Resources for Food and Agriculture

IUCN:

International Union for Conservation of Nature

IWMI:

International Water Management Institute

LD:

Linkage disequilibrium

MAB:

Marker-assisted breeding

MABC:

Marker-assisted backcrossing

MAGIC:

Multiparent advanced generation intercross

MAGP:

Marker-assisted gene pyramiding

MARS:

Marker-assisted recurrent selection

MAS:

Marker-assisted selection

MBC:

Map-based cloning

NAFIS:

National Bank for Agriculture and Rural Development All India Rural Financial Inclusion Survey

NAGS:

National Active Germplasm Sites

NBPGR:

National Bureau of Plant Genetic Resources

NERICA:

New Rice for Africa

NHEJ:

Nonhomologous end joining

NIDM:

National Institute of Disaster Management

NILs:

Near isogenic lines

NGS:

Next-generation sequencing

PCR:

Polymerase chain reaction

PGR:

Plant genetic resources

PoU:

Prevalence of undernourishment

QTL:

Quantitative trait loci

RILs:

Recombinant inbred lines

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RGA:

Rapid Generation Advancement

SADC:

Southern African Development Community

SARP:

Sequence-related amplified polymorphism

SCAR:

Sequence-characterized amplified region

SNPs:

Single nucleotide polymorphism

SSLPs:

Simple sequence length polymorphisms

SSR:

Simple sequence repeats

STRs:

Short tandem repeats

STS:

Sequence tagged site

TAC:

Technical Advisory Committee

TALENs:

Transcription activator-like effector nucleases

TILLING:

Targeting induced local lesions in genomes

UCDP:

Uppsala Conflict Data Program

UNCED:

United Nations Conference on Environment and Development

UNEP:

United Nations Environment Programme

UNHCR:

United Nation Higher Commission for Refugees

USEPA:

United States Environmental Protection Agency

VIR:

N. I. Vavilov All-Union Scientific Research Institute of Plant Industry

WGP:

Whole-genome prediction

WGS:

Whole-genome shotgun sequence

WHO:

World Health Organization

ZNFs:

Zinc-finger nucleases

References

  • Abbo S et al (2011) Experimental growing of wild pea in Israel and its bearing on near eastern plant domestication. Annals Bot 107:1399–1404

    Article  CAS  Google Scholar 

  • Abbo S, Yadun SL, Gopher A (2012) Plant domestication and crop evolution in the near east: on events and processes. Crit Rev Plant Sci 31(3):241–257

    Article  Google Scholar 

  • Abbo S, Pinhasi van-Oss R, Gopher A, Saranga Y, Ofner I, Peleg Z (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19(6):351–360

    Article  CAS  PubMed  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotech 30:174–178

    Article  CAS  Google Scholar 

  • Acosta-Gallegos J, Kelly JD, Gepts P (2007) Prebreeding in common bean and use of genetic diversity from wild germplasm. Crop Sci 47:44–59

    Article  Google Scholar 

  • Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148

    Article  PubMed  Google Scholar 

  • Ali ML, Sanchez PL, Yu S, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa L.). Rice 3:218–234

    Article  Google Scholar 

  • Allansson M, Melander E, Themner T (2017) Organized violence, 1989-2017. J Peace Res 55(4):535–547

    Google Scholar 

  • Allard RW (1999) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Allard RW (2013) Evolution during domestication. In: Principles of plant breeding (Reprint 2nd Edition). Wiley, New York, pp 24–35

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657

    Article  PubMed  Google Scholar 

  • Aniol A (2001) Genetic variation, development and availability of useful germplasm for plant breeding. Plant Breed Seed Sci 45:33–43

    Google Scholar 

  • Arnold ML, Kunte K (2017) Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol Evol 32:601–611. https://doi.org/10.1016/j.tree.2017.05.007

    Article  PubMed  Google Scholar 

  • Arora L, Narula A (2017) Gene editing and crop improvement using CRISPR-Cas9 system. Front Plant Sci 8:1–21

    Google Scholar 

  • Arora RK, Nayar ER (1984) Wild relatives of crop plants in India. NBPGR Sci. Monog. No. 7, NBPGR, New Delhi

    Google Scholar 

  • Arora RK, Pandey A (1996) Wild edible plants of India: diversity, conservation and use. National Bureau of Plant Genetic Resources, New Delhi

    Google Scholar 

  • Badr A et al (2000) On the origin and domestication history of barley. Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Balfourier F, Charmet G (1994) Etude methodologique de la conservation de resources genetiques de ray-grass anglais (Graminee fourragere) par multiplication en pools de populations naturelles. Genet Selection Evol 30:215–235

    Article  Google Scholar 

  • Balfourier F, Prosperi JM, Charmet G, Goulard M, Monestiez P (1999) Using spatial patterns of diversity to develop core collections. In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, pp 37–49

    Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koeng J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Baliki G, Bruck T, Stojetz W (2018) Monitoring and impact analysis of the BMZ and EU-funded FAO resilience programme in Syria. ISDC, Berlin

    Google Scholar 

  • Ballini E, Berruyer R, Morel JB, Lebrun MH, Notteghem JL, Tharreau D (2007) Modern elite rice varieties of the “Green revolution” have retained a large introgression from wild rice around the Pi33 rice blast resistance locus. New Phytol 175:340–350

    Article  CAS  PubMed  Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171. https://doi.org/10.1007/s00122-009-0970-0

    Article  CAS  PubMed  Google Scholar 

  • Bardini M, Labra M, Winfield M, Sala F (2003) Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana. Plant Cell Tissue Organ Cult 72(2):157–162

    Article  CAS  Google Scholar 

  • Bartel B, Bartel DP (2003) MicroRNAs: at the root of plant development? Plant Physiol 132(2):709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basigulp DH, Barnes DK, Stuckev RE (1995) Development of a core collection for perennial Medicago plant introductions. Crop Sci 35:1163–1168

    Article  Google Scholar 

  • Baur E (1914) Die Bedeutung der primitiven Kulturrassen und der wilden Verwandten unserer Kulturpflanzen fu¨r die Pflanzenzu¨chtung. Jahrbuch der Deutschen Landwirtschafts Gesellschaft 29:104–110

    Google Scholar 

  • Becker H (1993) Pflanzenzu¨ chtung. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Berg T, Bjornstad A, Fowler C, Skroppa T (1991) Technology options and the gene struggle: a report to the Norwegian Research Council for Science and Humanities (NAVF). NORAGRIC/Agricultural University of Norway, pp 1–146

    Google Scholar 

  • Bhattacharjee R (2000) Studies on the establishment of a core collection of pearl millet (Pennisetum glaucum). Ph. D. Thesis, CCS Haryana Agricultural University, Hisar – 125 004, India, p 162

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    Article  PubMed  Google Scholar 

  • Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 832(9890):427–451

    Article  Google Scholar 

  • Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ et al (2015) Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257. https://doi.org/10.1186/s12864-015-1444-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom J (2010) American wasteland. Da Capo Press, Cambridge, MA, p 360

    Google Scholar 

  • Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR / Cas9 technology. Front Plant Sci 9:1245

    Article  PubMed  PubMed Central  Google Scholar 

  • Bothmer VR, Fishbeek G, van Hintum T, Hodgkin T, Knupffer H (1990) The barley core collection. Final report of the BCC working group, Weihenstaphan, p 14

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Amer J Human Genet 32:314–331

    CAS  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Brar DS (2005) Broadening the gene pool of rice through introgression from wild species. In: Toriyama K, Hong KL, Hardy B (eds) Rice is life: scientific perspective for 21st century. IRRI, Muñoz, pp 157–160

    Google Scholar 

  • Breseghello F (2013) Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.). J Agric Food Chem 61:8277–8286

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Article  Google Scholar 

  • Brown AHD, Grace JP, Speer SS (1987) Designation of a core collection of perennial glycine. Soybean Genet Newsl 14:59–70

    Google Scholar 

  • Brown TA, Jones MK, Powell W, Allaby RG (2008) The complex origins of domesticated crops in the Fertile Crescent. Trends Plant Sci 24(2):103–109

    Google Scholar 

  • Bruck T, d’Errico M (2019) Reprint of: food security and violent conflict: introduction to the special issue. World Develop 119:145–149

    Article  Google Scholar 

  • Bruck T, Días Botía OM, Ferguson NTN, Ouédraogo J, Ziegelhöfer Z (2018) Assets for alimentation? The nutritional impact of assets-based programming in Niger. Innocenti Working Papers 5:1–56

    Google Scholar 

  • Bruke JM et al (2007) Crop evolution: from genetics to genomics. Curr Opin Genet Dev 17:525–532

    Article  CAS  Google Scholar 

  • Brush SB (2007) Farmers’ rights and protection of traditional agricultural knowledge. World Develop 35:1499–1514

    Article  Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  CAS  PubMed  Google Scholar 

  • Burger Y et al (2002) A single recessive gene for sucrose accumulation in cucumis melo fruit. J Am Soc Hortic Sci 127:938–943

    Article  CAS  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype – environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Buzby JC, Hyman J (2012) Total and per capita value of food loss in the United States. Food Policy 37:561–570

    Article  Google Scholar 

  • Cantrell RP, Christopher R, Dowswell CR, Paliwal RL (1996) Maize in the third world. Westview Press, Boulder, CO

    Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Chacón MI, Pickersgill SB, Debouck DG (2005) Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theor Appl Genet 110:432–444

    Article  CAS  Google Scholar 

  • Chaudhuri SK (2005) Genetic erosion of agrobiodiversity in India and intellectual property rights: interplay and some key issues. Patentmatics 5(6):1–10

    Google Scholar 

  • Chen S, Jin W, Wang M (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36(1):105–113

    Article  CAS  PubMed  Google Scholar 

  • Chessa C, Nieddu G (2005) Analysis of diversity in the fruit tree genetic resources from a Mediterranean island. Genet Resour Crop Evol 52:267–276

    Article  Google Scholar 

  • Cho GT, Yoon MS, Lee J, Baek HK, Kang JH, Kim TS, Paek NC (2008) Development of a core set of Korean soybean landraces [Glycine max (L.) Merr.]. J of Crop Sci Biotech 11(3):157–162

    Google Scholar 

  • Choudhary G, Ranjitkumar N, Surapaneni M, Deborah DA, Vipparla A, Anuradha G, Siddiq EA, Vemireddy LR (2013) Molecular genetic diversity of major Indian rice cultivars over decadal periods. PLoS One 8:e66197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CIAT, IFPRI (2018) Crop modeling work plan 2018, pp 1–7

    Google Scholar 

  • Cohen JI, Alcorn JB, Potter CS (1991) Utilization and conservation of genetic resources: international projects for sustainable agriculture. Econ Bot 45(2):190–199

    Article  Google Scholar 

  • Concibido VC, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    Article  CAS  PubMed  Google Scholar 

  • Convention on Biological Diversity (2007) Available online at: https://www.cbd.int/doc/meetings/cop-bureau/cop-bur-2007/cop-bur-2007-10-14-en.pdf

  • Cooper HD, Spillane C, Hodgkin T (2001) Broadening the genetic base of crops: an overview. In: Cooper HD, Spillane C, Hodgkin T (eds) Broadening the Genetic Base of Crop Production. CAB International, Oxon, UK., pp 1–23

    Chapter  Google Scholar 

  • Corderio CMT, Morales E, Ferreira P, Rocha DMS, Costa IVA, Silva S (1995) Towards a Brazilian core collections of cassava. In: Hodgkin T, Brown AHD, van Hintum MJL, Moarles EAVA (eds) Core collections of plant genetic resources. Wiley-Sayee Publication, Chichester, UK, pp 155–168

    Google Scholar 

  • Cox TS, Kiang YT, Gorman MB, Rodgers DM (1985) Relationship between coefficient of parentage and genetic similarity indices in soybean. Crop Sci 25:529–532

    Article  Google Scholar 

  • Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red and winter wheat regions of the United States. Proc Natl Acad Sci U S A 83:5583–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Hernandez CM, Bretting P, Eberhart SA, Taba S (1993) Statistical genetic considerations for maintaining germplasm collections. Theor Appl Genet 86:673–678

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, de Los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL et al (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genet 186:713–724

    Article  CAS  Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C et al (2013) Genomic prediction in maize breeding populations with genotyping by sequencing. G3 (Bethesda) 3:1903–1926

    Article  CAS  Google Scholar 

  • da Fonseca RR, Smith BD, Wales N, Cappellini E, Skoglund P, Fumagalli M (2015) The origin and evolution of maize in the southwestern United States. Nat Plants 1:14003

    Article  PubMed  Google Scholar 

  • Dahan Y, Rosenfeld R, Zadiranov V, Irihimovitch V (2010) A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division. Planta 232:663–676

    Article  CAS  PubMed  Google Scholar 

  • Dalrymple DG (1986) Development and spread of high-yielding wheat varieties in developing countries, 7th edn. US Agency for International Development, Washington, DC

    Google Scholar 

  • Daniel C (2006) A ‘Forever’ seed bank takes root in the Arctic. Science 312(5781):1730–1731

    Google Scholar 

  • Darlington CD (1973) Chromosome botany and the origins of cultivated plants, 3rd edn. Allen and Unwin, London

    Google Scholar 

  • Davari A, Khoshbakht K, Ghalegolab Behbahani A, Veisi H (2013) A qualitative assessment of diversity and factors leading to genetic erosion of vegetables: a case study of Varamin (Iran). Int J Agric Sci 3(3):198–212

    Google Scholar 

  • De Benoist, B, McLean, E, Egli, I, Cogswell, M (2008) Worldwide prevalence of anemia 1993–2005. World Health Organization. p 35

    Google Scholar 

  • de Candolle A (1890) Origin of cultivated plants. Haffner, New York

    Book  Google Scholar 

  • de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi E et al (2009) Predicting quantitative traits with regression models for dense molecular markers and pedigree. Genet 182:375–385

    Article  CAS  Google Scholar 

  • Dempewolf H et al (2012) Reproductive isolation during domestication. Plant Cell 24:2710–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhillon BS, Chhuneja P (2014) New initiatives for precision breeding. In: Chhuneja P, Brar KS, Ghumber RK (eds) Souvenir book of national symposium on crop improvement for inclusive sustainable development. Punjab Agricultural University, Ludhiana, pp 9–167th-9th Novemeber, 2014

    Google Scholar 

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Ann Rev Environ Resour 28:137–167

    Article  Google Scholar 

  • Diwan N, Bauchan GR, Mclintosh MS (1994) A core collection for the United States annual Medicago germplasm collections. Crop Sci 34:279–285

    Article  Google Scholar 

  • Diwan N, Mclntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF et al (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Luo MC, Akhunov ED (2011) Vavilov’s theory of Centres of diversity in the light of current understanding of wheat diversity, domestication and evolution. Czech J Genet Plant Breed:47

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechn 8:2–9

    Article  CAS  Google Scholar 

  • Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C (2016) Reticulation, divergence, and the phylogeography–phylogenetics continuum. Proc Natl Acad Sci U S A 113:8025–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis P, Roberts M (2016) Leveraging urbanisation in South Asia: managing spatial transformation for prosperity and liability. International Bank for Reconstruction and Development/The World Bank, Washington, DC, p 204

    Google Scholar 

  • Ellis PR, Pink DAC, Phelps K, Jukes PL, Breeds SE, Pinnegar AE (1998) Evaluation of a core collection of Brassica oleracea accessions for resistance to Brevicoryne brassicae, the cabbage aphid. Euphytica 103:149–160

    Article  Google Scholar 

  • EOS [Earth and Space Science News] (2019) Which greenhouse gas does the most damage to crops? Available from https://eos.org/research-spotlights/which-greenhouse-gas-does-the-most-damage-to-crops. Accessed on 17 June 2019

  • Eticha F, Sinebo W, Grausgruber H (2010) On-farm diversity and characterization of barley (Hordeum vulgare L.) landraces in the highlands of West Shewa Ethiopia. Ethnobot Res Appl 8:25–34

    Article  Google Scholar 

  • ETMarkets (2018) Agriculture sector to grow 2.1%: can it double farm income by 2022? Available from https://economictimes.indiatimes.com/markets/stocks/news/agriculture-sector-to-grow-2-1-can-it-double-farm-income-by-022/articleshow/62692884.cms?from=mdr. Accessed on 17 June 2019

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758

    Article  CAS  PubMed  Google Scholar 

  • FAO (1996a) Report on the state of the World’s plant genetic resources for food and agriculture, prepared for the international technical conference on plant genetic resources, Leipzig, Germany, 17–23 June 1996. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • FAO (1996b) Global action plan for the conservation and sustainable utilization of plant genetic resources for food and agriculture: Leipzig declaration International Technical Conference on plant genetic resources Jure Leipzig, Germany

    Google Scholar 

  • FAO (1996c) World food summit 1996. Final report Part 1. Available from www.fao.org/docrep/003/w3548e/w3548e00.htm. Accessed on 17 June 2019

  • FAO (1980) Assessment and Collection of Data on Postharvest Food Grain Losses. FAO Economic and Social Development Paper 13. Rome

    Google Scholar 

  • FAO (2004) Rice is life. Available from http://www.fao.org/rice2004/. Accessed on 17 June 2019

  • FAO (2011) Labour. Available from http://www.fao.org/3/i2490e/i2490e01b.pdf. Accessed on 17 June 2019

  • FAO (2012) Food and Agriculture Organization of the United Nations, Italy

    Google Scholar 

  • FAO (2017) Food security and nutrition around the World. Available from http://www.fao.org/state-of-food-security-nutrition/en/. Accessed on 17 June 2019

  • FAO/IAEA (1977) Induced mutations against plant diseases, STI/Pub/462. IAEA, Vienna

    Google Scholar 

  • Fischer I, Steige KA, Stephan W, Mboup M (2013) Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 8:e78182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint-Garcia SA (2013) Genetics and consequences of domestication. J Agri Food Chem 61:8267–8276

    Article  CAS  Google Scholar 

  • Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R (2003) A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Mol Biol 52(1):161–176

    Article  CAS  PubMed  Google Scholar 

  • Frankel OH, Bennett E (1970) Genetic resources – introduction. In: Frankel OH, Bennett E (eds) Genetic resources in plants – their exploration and conservation, IPB handbook, vol 11. International Biological Programme, London, pp 7–18

    Google Scholar 

  • Frankel OH, Brown AHD (1984) Current plant genetic resources – a critical appraisal. In: Genetics: new Frontiers, vol 4. Oxford and IBH publ. Co., New Delhi, pp 1–11

    Google Scholar 

  • Frey KJ (1981) Capabilities and limitations of conventional plant breeding. In: Rachie KO, Lyman JM (eds) Genetic Engineering for Crop Improvement – Working papers. Rockefeller Foundation, New York, pp 15–65

    Google Scholar 

  • Friis-Hansen E (1999) Erosion of plant genetic resources: causes and effect. Danish J Geo Spec Iss 1:61–68

    Google Scholar 

  • Fu YB (2015) Understanding crop genetic diversity under modern plant breeding. Theor Appl Genet 128:2131–2142

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu YB, Peterson GW, Scoles G, Rossnagel B, Schoen DJ, Richards KW (2003) Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Sci 43:1989–1995

    Article  Google Scholar 

  • Fu YB (2006) Impact of plant breeding on genetic diversity of agricultural crops: searching for molecular evidence. Plan Gen Resour 4:71–78

    Article  CAS  Google Scholar 

  • Fu YB, Peterson GW, Morrison MJ (2007) Genetic diversity of Canadian soybean cultivars and exotic germplasm revealed by simple sequence repeat markers. Crop Sci 47:1947–1954

    Article  CAS  Google Scholar 

  • Funk WC, Mckay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Galwey NW (1995) Verifying and validating the representativeness of a core collection. In: Hodgkin T, Brown AHD, van Hintum MJL, Morales EAV (eds) A Core Collections of Plant Genetic Resources. Wiley-Sayee Publications, Chichester, UK, pp 187–198

    Google Scholar 

  • Gao JP, Lin HX (2013) Methods in molecular biology. Humana Press, New York

    Google Scholar 

  • Gaut BS (2014) Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution. Mol Biol Evol 32:1661–1671

    Article  CAS  Google Scholar 

  • Gaut BS (2015) Evolution is an experiment: assessing parallelism in crop domestication and experimental evolution: (Nei Lecture, SMBE 2014, Puerto Rico). Mol Biol Evol 32:1661–1671. https://doi.org/10.1093/molbev/msv105

    Article  CAS  PubMed  Google Scholar 

  • Gautam PL, Singh BB, Sexana S, Sharma RK (2004) Collection, conservation and utilization of plant genetic resources. In: Jain HK, Kharkwal MC (eds) Plant breeding – Mendelian to molecular approaches. Narosa Publishing House, New Delhi, pp 657–690

    Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelvin SB (2017) Integration of agrobacterium T-DNA into the plant genome. Annual Rev Genet 51:195–217

    Article  CAS  Google Scholar 

  • Gheysen G, Van Montagu M, Zambryski P (1987) Integration of Agrobacterium tumefaciens transfer DNA (T-DNA) involves rearrangements of target plant DNA sequences. Proc Nat Acad Sci USA 84(17):6169–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill KS, Sandhu TS, Singh K, Brar JS (1975) Crop Improv 2:99

    Google Scholar 

  • Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290

    Article  PubMed  CAS  Google Scholar 

  • Golicz AA, Batley J, Edwards D (2016a) Towards plant pangenomics. Plant Biotech J 14:1099–1105

    Article  Google Scholar 

  • Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP et al (2016b) The pangenome of an agronomically important crop plant Brassica Oleracea. Nat Commun 7:13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • González-Camacho JM, de Los Campos G, Pérez P, Gianola D, Cairns JE, Mahuku G et al (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Good Food World (2011) Where have all the farmers gone? November 16th, 2011. Available from http://www.goodfoodworld.com/2011/11/where-have-all-the-farmers-gone/. Accessed on 17 June 2019

    Google Scholar 

  • Gordon SP, Contreras-Moreira B, Woods DP, Marais DLD, Burgess D, Shu SQ, Stritt C, Roulin AC, Schackwitz W, Tyler L et al (2017) Extensive gene content variation in the Brachypodium distachyon pan-genome correlates with population structure. Nat Commun 8:2184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gowda J, Rekha D, Bharti S, Krishnappa M (2007) Methods of constructing core set using agro-morphological traits in foxtail millet. J Plant Genet Res 20(1):38–42

    Google Scholar 

  • Gowda J, Rekha D, Somu G, Bharti S, Krishnappa M (2008) Development of core set in little millet (Panicum sumatrense) germplasm using data on twenty one morpho-agronomic characters. Environ Ecol 26(3):1055–1060

    Google Scholar 

  • Gowda J, Bharati S, Somu G, Krishnappa M, Rekha D (2009) Formation of core set in barnyard millet (Echenocloa frumentaces (Rox b.) Link) germplasm using data on twenty four morpho-agronomic characters. Int J Plant Sci 4:1): 1–1): 5

    Google Scholar 

  • Grauke LJ, Thompson TE (1995) Evolution of pecan [Carya illinoinensis (Wangenh.) K. Koch] germplasm collections and designation of a core subset. Hort Sci 30(5):50–54

    Google Scholar 

  • Greene T (2019) Genome editing in crops. In: XIV Agricultural Science Congress, 20th–23rd February, 2019, NASC, Pusa, New Delhi, India. p 9

    Google Scholar 

  • Grenier C, Bramel PJ, Hamon P (2001) Core collection of the genetic resources of sorghum: 1. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Article  Google Scholar 

  • Grenier C, Cao TV, Ospina Y, Quintero C, Châtel MH, Tohme J et al (2015) Accuracy of genomic selection in a rice synthetic population developed for recurrent selection breeding. PLoS One 10:e0136594. https://doi.org/10.1371/journal.pone.0136594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gressel J (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protect 23:661–689

    Article  Google Scholar 

  • Groombridge B (1992) Global biodiversity:status of the Earth’s living resources. A report compiled by the world conservation monitoring Centre. Chapman and Hall, London

    Book  Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15:529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, Petruff T et al (2012) Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol 160:1303–1317. https://doi.org/10.1104/pp.112.204503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustavasson J, Cederberg C, Sonesson U, van Otterdijk R, Meybeck A (2011) Global food losses and food waste: extent causes and prevention. Food and Agriculture Organization (FAO) of the United Nations, p 23

    Google Scholar 

  • Hallauer AR (2011) Evolution of plant breeding. Crop Breed Appl Biotechn 11:197–206

    Article  Google Scholar 

  • Hammer K, Knuepffer H, Xhuveli L, Perrino P (1996) Estimating genetic erosion in landraces—two case studies. Genet Res Crop Evol 43:329–336

    Article  Google Scholar 

  • Hamon S, Noirot M (1990) Some proposed procedures for obtaining a core collection using quantitative plant characterization data. In: Proceedings of international workshop on okra. NBPGR, New Delhi, pp 8–12

    Google Scholar 

  • Hamon S, Van Sloten DH (1989) Characterization and evaluation of okra. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, UK, pp 173–196

    Google Scholar 

  • Hamon S, Noirot M, Anthony F (1995) Developing a coffee core collection using the principal components score strategy with quantitative data. In: Hodgkin T, Brown AHD, van Hintum MJL, Morales EAV (eds) Core collections of plant genetic resources. A Wiley-Sayee Publications, Chichester, UK, pp 117–126

    Google Scholar 

  • Hao C, Wang L, Zhang X, You G, Dong Y, Jia J, Liu X, Shang X, Liu S, Cao Y (2006) Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers. Science China C Life Sci 49:218–226

    Article  CAS  Google Scholar 

  • Haradari CB (2009) Formation of core set in African and Indian finger millet (Eleusine coracana (L.) Gaertn) accessions. M.Sc. (Ag.) Thesis, University of Agricultural Sciences, Bangalore

    Google Scholar 

  • Harlan HV (1957) One man’s life with barley. Exposition Press, New York

    Google Scholar 

  • Harlan JR (1965) Plant introduction and biosynthesis. In: Plant breeding symposium, pp 55–83

    Google Scholar 

  • Harlan JR (1970) Evolution of cultivated plants. In: Frankel OH, Bennett E (eds) Genetic resources in plants – IBP handbook no 11. International Biological Programme, London, pp 19–32

    Google Scholar 

  • Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621

    Article  Google Scholar 

  • Harlan JR (1987) Gene centres and gene utilization in American agriculture. In: Yeotman CW, Xaflon D, Wilkes G (eds) Plant genetic resources: a conservation imperative, AAAS selected symposium 87. Westview Press, Boulde Colorado, pp 111–129

    Google Scholar 

  • Harlan JR (1992) Crops and man, 2nd edn. American Society of Agronomy and Crop Science Society of America, San Antonio

    Google Scholar 

  • Harlan JR (1995) The living fields: our agricultural heritage. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Haussmann BIG, Parzies HK, Presterl T, Susic Z, Miedaner T (2004) Plant genetic resources in crop improvement. Plant Genet Res 2(1):3–21

    Article  Google Scholar 

  • Hawkes JG (1977) The importance of wild germplasm in plant breeding. Euphytica 26:615–621

    Article  Google Scholar 

  • Heppner MJ (1923) The factor for bitterness in the sweet almond. Genet 8:390–391

    CAS  Google Scholar 

  • Hernández M, Pla M, Esteve T, Prat S, Puigdomènech P, Ferrando A (2003) A specific real-time quantitative PCR detection system for event MON810 in maize YieldGard based on the 3′-transgene integration sequence. Transgenic Res 12(2):179–189

    Article  PubMed  Google Scholar 

  • Hernandez-Verdugo S, Luna-Reyes R, Oyama K (2001) Genetic structure and differentiation of wild and domesticated populations of Capsicum annuum (Solanaceae) from Mexico. Plant Syst Evol 226:129–142

    Article  Google Scholar 

  • Heslot N, Rutkoski J, Poland J, Jannink JL, Sorrells ME (2013) Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS One 8:e74612. https://doi.org/10.1371/journal.pone.0074612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heszkyl L (2008) Challenges of plant breeding early in 21th century. In: Hungarian agricultural research. Institute of Genetics and Biotechnology, St. Istvan University, Godollo, pp 4–8

    Google Scholar 

  • Heun M, Schaefer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Heywood VH (1990) Botanic gardens and the conservation of plant resources. Impact Sci Soc 158:121–132

    Google Scholar 

  • Heywood VH (1995) Global biodiversity assessment. UNEP. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hirsch CN, Foerster JM, Johnson JM, Sekhon RS, Muttoni G, Vaillancourt B, Penagaricano F et al (2014) Insights into the maize pangenome and pan-transcriptome. Plant Cell 26:121–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodkinson TR, Parnell JAN (2007) Reconstructing the tree of life: taxonomy and systematic of species rich taxa, Systematics association, special series, vol 72. Taylor and Francis, CRC Press, Boca Raton

    Google Scholar 

  • Holbrook CC (1999) Testing and utilization of a core collection for the US germplasm collection of peanut. In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, pp 68–73

    Google Scholar 

  • Holbrook CC, Anderson WF, Pittman RN (1993) Selection of a core collection from the US germplasms collection of peanuts. Crop Sci 33:859–861

    Article  Google Scholar 

  • Holbrook CC, Timper P, Xue HQ (2000) Evaluation of the core collection approach for identifying resistance to Meloidogyne arenaria in peanut. Crop Sci 40:1172–1175

    Article  Google Scholar 

  • Holden JHW (1984) The second ten years. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. George Allen and Unwin, London, UK, pp 277–285

    Google Scholar 

  • Holland W (2018) Kerala flooding: agricultural impacts and environmental degradation. The Cabi Blog. Available at https://blog.cabi.org/2018/09/26/kerala-flooding-agricultural-impacts-and-environmental-degradation/. Accessed on 10 June 2019

  • Hoyt E (1988) Conserving the wild relatives of crops. IBPGR – IUCN – WWF, IBPGR, Rome

    Google Scholar 

  • Huaman Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweet potato core collection on the basis of morphological, eco-geographical, disease and pest reaction data. Theor Appl Genet 98:840–844

    Article  Google Scholar 

  • Huang H (2011) Plant diversity and conservation in China: planning a strategic bioresource for a sustainable future. Bot J Linn Soc 166:282–300

    Article  PubMed  Google Scholar 

  • Huang XQ, Coster H, Ganal MW, Roder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theort Appl Genet 106:1379–1389

    Article  CAS  Google Scholar 

  • Huang X, Paulo MJ, Boer M, Effgen S, Keizer P, Koornneef M, van Eeuwijk FA (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Nat Acad Sci USA 108:4088–4093

    Google Scholar 

  • Huang H, Oldfield S, Qian H (2013) Chapter 2: Global significance of plant diversity in China. In: De-Yuan H, Blackmore S (eds) Plants of China. Science Press, Beijing, pp 7–34

    Google Scholar 

  • Hufford MB et al (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hummer KE, Hancock JF (2015) Vavilovian centers of plant diversity: implications and impacts. HortSci 50(6):780–783

    Article  CAS  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IA (2018) Homeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotech J 16:1265–1271

    Article  CAS  Google Scholar 

  • Ichikawa T, Nakazawa M, Kawashima M (2003) Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J 36(3):421–429

    Article  CAS  PubMed  Google Scholar 

  • ICRISAT (1976) Chickpea breeding. Annual Report, 1975–1976. ICRISAT, Hyderabad

    Google Scholar 

  • ICRISAT (2004) Success story 22 Jan 2004. Patancheru, Hyderabad, India. Online website www.icrisat.org

  • Igartua E, Gracia MP, Lasa JM, Medina B, Molina-Cano JL, Romagosa I (1998) The Spanish barley core collection. Genet Res Crop Evol 45(5):475–481

    Article  Google Scholar 

  • IME [Institution of Mechanical Engineers] (2013) Global food waste not, want not. Available at: https://www.imeche.org/policy-and-press/reports/detail/global-food-waste-not-want-not. Accessed on 17 June 2019

  • IPCC [Intergovernmental Panel on Climate Change] (2013) Climate change 2013: the physical science basis, Working group I contribution to the IPCC fifth assessment report. Cambridge University Press, Cambridge, UK. Available at: www.ipcc.ch/report/ar5/wg1. Accessed on 17 June 2019

    Google Scholar 

  • IPGRI (1993) Diversity for development. International Plant Genetic Resources Institute, Rome, p 136

    Google Scholar 

  • ISAAA (2017) Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years, ISAAA Brief No. 53. ISAAA, Ithaca, NY

    Google Scholar 

  • Jacquemin J, Bhatia D, Singh K, Wing RA (2013) The international Oryza, map alignment project: development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr Opin Plant Biol 16:147–156

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Ramasamy K, Sellamuthu G, Jayabalan S, Venkataraman G (2018) CRISPR for crop improvement: an update review. Front Plant Sci 9:985

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118(2):153–166

    Article  CAS  Google Scholar 

  • Jain SK, Omprakash (2019) Pre-breeding: a bridge between genetic resources and crop improvement. Int J Curr Microbiol Appl Sci 8(2):1998–2007

    Article  Google Scholar 

  • Jana R, David VLK (2016) Application of next-generation sequencing in plant breeding. Czech J Genet Plant Breed. https://doi.org/10.17221/192/2016-CJGPB

    Article  CAS  Google Scholar 

  • Jana S, Pietrzak LN (1988) Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. Genet 119:981–990

    CAS  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Jauhar A, Santiaguel FA (2011) Greener rice. Rice Today 10:27–29

    Google Scholar 

  • Jia L, Agrama H, Yeater KM, Yan W, Mc Clung AM, Wu D (2009) Evaluation of the USDA rice core collection for sheath blight disease using micro-chamber. In: Proceedings of 2009 international annual meetings of ASA-CSSA-SSSA, November 1–5, 2009, Pittsburgh, Pennsylvania

    Google Scholar 

  • Jiang HF, Ren XP, Liao BS, Huang JQ, Lei Y, Chen BY, Guo B, Holbrook CC, Upadhyaya HD (2008) Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sinica 34(1):25–30

    Article  CAS  Google Scholar 

  • Jones MR, Good JM (2016) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202

    Article  PubMed  Google Scholar 

  • Jorger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Front Zool 10:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Jyoti K, Ruchi B, Sundeep K (2017) Plant genetic resources: effective utilization for sustainability. Adv Biotech Micro 3(2):555609. https://doi.org/10.19080/AIBM.2017.03.555609

    Article  Google Scholar 

  • Kaga A et al (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genet 178:1013–1036

    Article  CAS  Google Scholar 

  • Kaneda T, Haub C (2018) How many people have ever lived on earth? Available at: https://www.prb.org/howmanypeoplehaveeverlivedonearth/. Accessed on 2 Feb 2019

  • Kang LZ et al (2014) The 3000 Rice genome project. Giga Science. https://doi.org/10.1186/2047-217X-3-7

  • Kaya H, Sato S, Tabata S, Kobayashi Y, Iwabuchi M, Araki T (2000) hosoba toge toge, a syndrome caused by a large chromosomal deletion associated with a T-DNA insertion in Arabidopsis. Plant Cell Physiol 41(9):1055–1066

    Article  CAS  PubMed  Google Scholar 

  • Kiambi D, Ford-Lloyd B, Jackson MT, Guarino L, Maxted N, Newbury HJ (2005) Collection of wild rice (Oryza L.) in east and southern Africa in response to genetic erosion. Plant Genet Res Newslett 142:10–20

    Google Scholar 

  • Kijima Y, Sserunkuuma D, Otsuka K (2006) How revolutionary is the “Nerica revolution”? Evidence from Uganda. Develop Econ 44:252–267

    Article  Google Scholar 

  • Kim SR, Lee J, Jun SH (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52(4):761–773

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Veena, Gelvin S (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kistler L, Yoshi Maezumi S, Gregorio de Souza J, Przelomska NAS, Malaquias Costa F, Smith O, Loiselle H, Ramos-Madrigal J, Wales N, Ribeiro ER, Morrison RR, Grimaldo C, Prous AP, Bernardo Arriaza M, Gilbert TP, de Oliveira Freitas F, Allaby RG (2018) Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science 362:1309–1313

    Article  CAS  PubMed  Google Scholar 

  • Knupffer H, van Hintum MJL (1995) The barley core collection- an international effort. In: Hodgkin T, Brown AHD, van Hintum MJL, Morales EAV (eds) Core collections of plant genetic resources. A Wiley-Sayee Publications, Chichester, pp 171–178

    Google Scholar 

  • Kombo GR, Dansi A, Loko LY et al (2012) Diversity of cassava (Manihot esculenta Crantz) cultivars and its management in the department of Bouenza in the Republic of Congo. Genet Res Crop Evol 59(8):1789–1803

    Article  Google Scholar 

  • Kottapalli P, Upadhyaya HD, Kottapalli KR, Payton PR Puppala N (2010) Molecular characterisation and assessment of genetic diversity in Valencia mini core using SSR markers. In: Proceedings of the American Peanut Research and Education Society, Inc. July 14th–17th, 2009, Releigh, North Carolina, p 38

    Google Scholar 

  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11(12):2283–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Fladung M (2002) Transgene integration in aspen: structures of integration sites and mechanism of T-DNA integration. Plant J 31(4):543–551

    Article  CAS  PubMed  Google Scholar 

  • Kusaba M, Miyahara K, Iida S (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15(6):1455–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladizinsky G (1987) Pulse domestication before cultivation. Econ Bot 41:60–65

    Article  Google Scholar 

  • Ladizinsky G (1993) Lentil domestication: on the quality of evidence and arguments. Econ Bot 47:60–64

    Article  Google Scholar 

  • Ladizinsky G (1998) Plant evolution under domestication. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  • Ladizinsky G (1999) On the origin of almond. Genet Res Crop Evol 46:143–147

    Article  Google Scholar 

  • Lado B, Barrios PG, Quincke M, Silva P, Gutiérrez L (2016) Modeling genotype-environment interaction for genomic selection with unbalanced data from a wheat breeding program. Crop Sci 56:1–15. https://doi.org/10.2135/cropsci2015.04.0207

    Article  Google Scholar 

  • Laghetti G, Fiorentin G, Hammer K, Pignone D (2009) On the trail of the last autochthonous Italian einkorn (Triticum monococcum L.) and emmer (Triticum dicoccon Schrank) populations: a mission impossible? Genet Res Crop Evol 56(8):1163–1170

    Article  Google Scholar 

  • Larson G, Burger J (2013) A population genetics view of animal domestication. Trends Genet 29:197–205

    Article  CAS  PubMed  Google Scholar 

  • Leache AD, Oaks JR (2017) The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Ann Rev Ecol Syst 48:69–84

    Article  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43(4):661–668

    Article  CAS  PubMed  Google Scholar 

  • Lenser T, Theißen G (2013) Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci 18:704–714

    Article  CAS  PubMed  Google Scholar 

  • Lester RN (1989) Evolution under domestication involving disturbance of genic balance. Euphytica 44:125–132

    Article  Google Scholar 

  • Li DJ, Sun CQ, Fu YC, Li C, Zhu ZF, Chen L, Cai HW, Wang XK (2002) Identification and mapping of genes for improving yield from Chinese common wild rice (O. rufipogon Griff.) using advanced backcross QTL analysis. Cjin Sci Bull 47:1053–1059

    Google Scholar 

  • Li Y, Rosso MG, Ulker B, Weisshaar B (2006) Analysis of TDNA insertion site distribution patterns in Arabidopsis thaliana reveals special features of genes without insertions. Genomics 87:645–652

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, al GY (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotech 32:1045–1052

    Article  CAS  Google Scholar 

  • Liang HZ, Zi-Chao L, Deng-Quan L, Ya-Wen Z, Shi-Quan S, Ping M, Zhong-Yi Y, Xiang-Kun W (2004) Microsatellite analysis of landrace rice core collection in Yunan, China. Chinese J Agril Biotech 1:23–30

    Article  Google Scholar 

  • Lin K, Zhang N, Severing E, Nijveen H, Cheng F, Visser R, Wang X et al (2014) Beyond genomic variation – comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15:250

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling LX, Yong-gen LU, Jin-quen LI, Hai-ming XU, Muhammad Q (2011) Strategies on sample size determination and qualitative and quantitative traits integration to construct core collection of rice (Oryza sativa L.). J Rice Sci 18(1):46–55

    Article  Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Amer J Human Genet 44(3):397–401

    CAS  Google Scholar 

  • Lokanathan TR, Phundan Singh, Agarwal DK., Punit Mohan, Suman Bala Singh, Vinita Gotmare, Singh VV (2003) Genetic enhancement in cotton. Technical Bulletin from CICR Report No. 26

    Google Scholar 

  • Londo JP, Chiang YC, Hung KH, Chiang TY, Schaal BA (2006) Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa. Proc Nat Acad Sci USA 103:9578–9583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louwaars NP (2018) Plant breeding and diversity: a troubled relationship? Euphytica 214:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu XM, Hu XJ, Zhao YZ, Song WB, Zhang M, Chen ZL, Chen W, Dong YB, Wang ZH, Lai JS (2012) Map-based cloning of zb7 encoding an IPP and DMAPP synthase in the MEP pathway of maize. Mol Plant 5(5):1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Lucht JM, Mauch-Mani B, Steiner HY, Metraux JP, Ryals J, Hohn B (2002) Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet 30(3):311–314

    Article  PubMed  Google Scholar 

  • Luciano LN, Peterinain E (2000) Prebreeding: a link between genetic resources and maize breeding. Sci Agric 57:3):1–3)10

    Google Scholar 

  • Mackay MC (1990) Strategic planning for effective evaluation of plant germplasm. In: Srivastava IP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. Wiley, New York, pp 49–53

    Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94(4):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan RK, Bisht IS, Agarwal RC, Rana RS (1996) Studies on South Asian okra collection: methodology for establishing a representative core set using characterization data. Genet Res Crop Evol 43:249–255

    Article  Google Scholar 

  • Majeský L, Vasut RJ, Kitner M, Trávnicek B (2012) The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS One 7:e41868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52(2):421–432

    Article  CAS  PubMed  Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446:279–283. https://doi.org/10.1038/nature05706

    Article  CAS  PubMed  Google Scholar 

  • Malvar RA, Butron A, Alvarez A, Ordas B, Soengas P, Revilla P, Ordas A (2004) Evaluation of the European Union maize landrace core collection for resistance to Sesamia nonagrioides (Lepidoptera: Noctuidae) and Ostrinia nubilalis (Lepidoptera:Crambidae). J Econ Entomol 97:628–634

    Article  CAS  PubMed  Google Scholar 

  • Malysheva-Otto L, Ganal MW, Law JR, Reeves JC, Roder MS (2007) Temporal trends of genetic diversity in European barley cultivars (Hordeum vulgare L.). Mol Breed 20:309–322

    Article  Google Scholar 

  • Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP (2018) Wild relatives of maize, rice, cotton, and soybean: treasure troves for tolerance to biotic and abiotic stresses. Front Plant Sci 9:886. https://doi.org/10.3389/fpls.2018.00886

    Article  PubMed  PubMed Central  Google Scholar 

  • Mangelsdorf PC (1966) Genetic potential for increasing yields of food crops and animals. Proc Nat Acad Sci USA 56:370–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak E, Irish EJ et al (2000) JOINTLESS is a MADS-box gene controlling flower abscission zone development. Nature 406:910–913

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ainsworth NE, Tenaillon MI (2016) Superheroes and masterminds of plant domestication. C R Biol 339:268–273

    Article  PubMed  Google Scholar 

  • Martinville B d, Wyman AR, White R, Francke U (1982) Assignment of the first random restriction fragment length polymorphism (RFLP) locus (D14S1) to a region of human chromosome 14. Amer J Human Genet 34(2):216–226

    Google Scholar 

  • Mathews P, Ambrose MJ (1994) Development and use of a core collection for the John Inns Pisum collection. In: Proceedings of the Eucarpia meeting: evaluation and exploitation of genetic resources. March 15th–18th, Clermont Ferrand, France. pp 99–102

    Google Scholar 

  • Matsuoka Y, Mitchell SE, Kresovich S, Goodman M, Doebley J (2002) Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theor Appl Genet 104(2–3):436–450

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotech 18:455–457

    Article  CAS  Google Scholar 

  • McClung AM, Chen M, Bockelman HE, Bryant RJ, Yan W, Fjellstrom RG (2004) Characterization of a core collection of rice germplasm and elite breeding lines in the US with genetic markers associated with cooking quality. In: Proceedings of the 2nd international Rice functional genomics conference, Tuscon, Arizona. p 127

    Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ (2007) Crop plants: evolution. In: Hetherington AM (ed) eLS. Wiley, New York, pp 1–7

    Google Scholar 

  • Mohan M, Nair S, Bhagwat A (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    Article  CAS  Google Scholar 

  • Mongkolporn O, Suntree Hanyong S, Julapark Chunwongse J, Sirikul Wasee S (2015) Establishment of a core collection of chilli germplasm using microsatellite analysis. Plant Genet Res 13(2):104–110

    Article  Google Scholar 

  • Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Dolezel J, Batley J et al (2017) The pangenome of hexaploid bread wheat. Plant J 90:1007–1013

    Article  CAS  PubMed  Google Scholar 

  • Moody DB, Rathjen AJ, Cartwright B, Paull JF, Lewis J (1988) Genetic diversity and geographical distribution of tolerance to high levels of soil boron. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetic symposium. Cambridge University Press, Cambridge, UK, pp 859–865

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Nass LL, Paterniani E (2000) Pre-breeding: a link between genetic resources and maize breeding. Sci Agric 57:581–587

    Article  Google Scholar 

  • Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manual M, Desai T et al (2017) Morphometric, behavioral, and genomic evidence for a new orangutan species. Curr Cell Biol 27:3487–3498

    CAS  Google Scholar 

  • NIDM [National Institute of Disaster Management] (2015) Impact and damage assessment. In: Uttarakhand disaster 2013. National Institute of Disaster Management (Ministry of Home Affairs, Government of India), pp 89–114

    Google Scholar 

  • Ochoa CM (1975) Potato collecting expeditions in Chile, Bolivia and Peru, and the genetic erosion of indigenous cultivars. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. International biological Programme 2. Cambridge University Press, Cambridge, UK, pp 167–173

    Google Scholar 

  • Oliveira MF, Randall LN, Isaias OG, Cosme DC, José Francisco F, Toledo d (2010) Establishing a soybean germplasm core collection. Field Crops Res 119(2–3):277–289

    Article  Google Scholar 

  • Olsen KM, Wendel JF (2013) A bountiful harvest: genomics insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  PubMed  Google Scholar 

  • Ortiz R, Lund B, Anderson SB (2003) Breeding gain and changes in morphotype of Nordic spring wheat (1901–1993) under contrasting environments. Genet Res Crop Evol 50:455–459

    Article  Google Scholar 

  • Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortSci 40:1620–1630

    Article  CAS  Google Scholar 

  • Paun O, Hörandl E (2006) Evolution of hypervariable microsatellites in apomictic polyploid lineages of Ranunculus carpaticola: directional bias at dinucleotide loci. Genet 174:387–398

    Article  CAS  Google Scholar 

  • Paun O, Greilhuber J, Temsch E, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae). Mol Ecol 15:897–910

    Article  CAS  PubMed  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17(1):49–60

    Article  CAS  PubMed  Google Scholar 

  • Pickersgill B (2009) Domestication of plants revisited – Darwin to the present day. Bot J Linn Soc 161:203–212

    Article  Google Scholar 

  • Pickersgill B (2018) Parallel vs. convergent evolution in domestication and diversification of crops in the Americas. Front Ecol Evol. https://doi.org/10.3389/fevo.2018.00056

  • Pierre CS, Burgueño J, Crossa J, Dávila GF, López PF, Moya ES et al (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Sci Rep 6:1–11

    Article  CAS  Google Scholar 

  • Pimm SL, Gittlaman JL, McCracken GF, Gilpin M (1989) Genetic bottlenecks: alternative explanations for low genetic variability. Trends Ecol Evol 4:176–177

    Article  CAS  PubMed  Google Scholar 

  • Pingali PL (2012) Green revolution: impacts, limits, and the path ahead. Proc Nat Acad Sci USA 109:12302–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pkania CK, Jian-Guo W, Hai-Ming X, Chun-Hai S, Chang-Tao L (2006) Addressing rice germplasm genetic potential using genotypic value to develop quality core. J Sci Food Agric 87(2):326–333

    Article  CAS  Google Scholar 

  • Plunkett DL, Smith NJH, Williams JT, Anishetty NM (1987) Gene banks and the worlds food. Princton University Press, Princeton

    Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Poncet V, Robert T, Sarr A, Gepts P (2004) Quantitative trait locus analysis of the domestication syndrome and domestication process. In: Goodman RM (ed) Encyclopedia of plant and crop science. M. Dekker, New York, pp 1069–1074

    Chapter  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Zhang D, Zhang H, Wang M, Sun J, Wei X, Qiu Z, Tang S, Cao Y, Wang X, Li Z (2006) Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. Chin Sci Bull 51:681–688

    Article  CAS  Google Scholar 

  • Qualset CO, McGuire PE, Warbuton ML (1995) Agrobiodiversity – key to agricultural productivity. California Agri 49:45–49

    Article  Google Scholar 

  • Qualset CO, Damania AB, Zanatta ACA, Brush SB (1997) Locally based crop plant conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 160–175

    Google Scholar 

  • Radovic G, Jelovac D (1994) The possible approach in maize core collection development. In: Proceedings of Eucarpia meeting: Evaluation and exploitation of genetic resources. March 15th–18th, Clermont Ferrand, France. pp 109–115

    Google Scholar 

  • Ram T, Majumder ND, Krishnaveni D, Ansari MM (2007) Rice variety Dhanrasi, an example of improving yield potential and disease resistance by introgressing gene(s) from wild species (Oryza rufipogon). Curr Sci 92:987–992

    Google Scholar 

  • Ramachandran P (2013) Food and nutrition security: challenges in the new millennium. Indian J Medical Res 138(3):373–382

    Google Scholar 

  • Ramesh Babu (2019) Genomic selection in crops: status and prospects. In: XIV agricultural science congress, 20th–23rd February, 2019, NASC, Pusa, New Delhi, India. p 7

    Google Scholar 

  • Rao KEP, Rao VR (1995) The use of characterization data in developing a core collection of sorghum. In: Hodgkin T, Brown AHD, van Hintum MJL, Morales EAV (eds) Core collections of plant genetic resources. A Wiley-Sayee Publications, Chichester, UK, pp 109–116

    Google Scholar 

  • Rao SLV, Chaitanya U, Gautam NK, Viraktamath BC (2012) Development of rice mini core. In: Proceedings of International symposium on 100 years of Rice Science and Looking Beyond, Jan 9th–12th 2012, TNAU, Coimbatore, Tamil Nadu. p 24

    Google Scholar 

  • Rauf S, da Silva JT, Khan AA, Naveed A (2010) Consequences of plant breeding on genetic diversity. Int J Plant Breed 41:1–21

    Google Scholar 

  • Reddy LJ, Upadhyaya HD, Gowda CLL, Singh S (2005) Development of core collection in pigeon pea [Cajanus cajan (L.) Millspaugh] using geographic and qualitative morphological descriptors. Genet Res Crop Evol 52:1049–1056

    Article  Google Scholar 

  • Reif JC, Hamrit S, Heckenberger M, Schipprack W, Maurer HP, Bohn M, Melchinger AE (2005) Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theor Appl Genet 111:838–845

    Article  PubMed  Google Scholar 

  • Rick CM (1979) Potential improvement of tomatos by controlled introgression of genes from wild species. In: Proceedingds of conference on broadening Genetic Base of crops. 1978. Wageningen Pudoc. Wageningen, The Netherlands

    Google Scholar 

  • Rick CM (1984) Plant germplasm resources. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Hand book of cell culture. Mac Milan, New York, pp 9–37

    Google Scholar 

  • Rieger R, Michaelis A, Green M (1976) Glossary of genetics and cytogenetics. Springer, New York

    Book  Google Scholar 

  • Rieseberg LH, Willis JH (2007) Plant speciation. Science 317:910–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers DM, Murphy JP, Frey KJ (1983) Impact of plant breeding on the grain yield and genetic diversity of spring oats. Crop Sci 23:737–740

    Article  Google Scholar 

  • Ronen G, Carmel GL, Zamir D, Hirchberg J (2000) An alternative pathway to carotene formation in plant chromoplasts discovered by map-based cloning and old gold color mutation in tomato. Proc Nat Acad Sci USA 97:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronfort J, Glemin S (2013) Mating system, Haldene’s sieve and the domestication process. Evolution 67:1518–1526

    PubMed  Google Scholar 

  • Ross H (1979) Wild species and primitive cultivars as ancestors of potato varieties. In: Proceedings Conference on Broadening Genetic Base of Crops. 1978. Wageningen Pudoc. Wageningen, The Netherlands

    Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 104(Suppl 1):8641–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    Article  CAS  PubMed  Google Scholar 

  • Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N (2016) Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol 14:e2000234. https://doi.org/10.1371/journal.pbio.2000234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7:1–10

    Article  Google Scholar 

  • Ryu CH, You JH, Kang HG (2004) Generation of T-DNA tagging lines with a bidirectional gene trap vector and the establishment of an insertion-site database. Plant Mol Biol 54(4):489–502

    Article  CAS  PubMed  Google Scholar 

  • SADC [Southern African Development Community] (2014) Food and nutrition security strategy 2015–2025. Southern African Development Community p 46

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1987) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839):487–491

    Article  Google Scholar 

  • Saini P (2012) Formation of core set in rice (Oryza sativa L.) short duration germplasm accessions. M.Sc. (Ag.) Thesis, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala

    Google Scholar 

  • Sakuma S et al (2011) The domestication syndrome genes responsible for the major changes in plant form in the Triticeae crops. Plant Cell Physiol 52:738–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: Progress toward a more nourishing future. Glob Food Sec 2(1):9–17

    Article  Google Scholar 

  • Saltzman A, Birol E, Oparinde A, Andersson MS, Asare-Marfo D, Diressie MT, Gonzalez C, Lividini K, Moursi M, Zeller M (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann New York Acad Sci 1390:104–114

    Article  Google Scholar 

  • Samra JS and Singh G (2003) Cold wave of 2002–2003: impact on agriculture. Indian Council Agril Res p 49

    Google Scholar 

  • Sang T (2009) Genes and mutations underlying domestication transitions in grasses. Plant Physiol 149:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang T, Ge S (2013) Understanding rice domestication and implications for cultivar improvement. Curr Opin Plant Biol 16:139–146

    Article  PubMed  Google Scholar 

  • Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Nat Acad Sci USA 99:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satterthwaite D, McGranahan G, Tacoli C (2010) Urbanisation and its implications for food and farming. Philos Trans R Soc B 365:2809–2820

    Article  Google Scholar 

  • Schatz M, Maron L, Stein J, Wences A, Gurtowski J, Biggers E, Lee H et al (2014) Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica. Genome Biol 15:506

    PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15:662–676

    Article  CAS  PubMed  Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soya bean that increases seed protein concentration in soy bean. Crop Sci 40:1438–1444

    Article  CAS  Google Scholar 

  • Seetharam A (2007) Pre-breeding: An important step in the effective utilization of conserved germplasm. National workshop on utilization of wild mulberry genetic resources 2nd & 3rd Nov. 2007. 9–16

    Google Scholar 

  • Sharma JR (1994) Principles and practice of plant breeding. Tata McGraw-Hill Publishing Company Limited, New Delhi

    Google Scholar 

  • Sharma VP (2015) Dynamics of land use competition in India: perceptions and realities. Indian Institute of Management, Ahmadabad, Working paper no 2015-06-02

    Google Scholar 

  • Sharma RK, Jagshoran (2000) Contribution of exotic germplasm in wheat breeding in India. Indian J Plant Genet Res 13:75–79

    Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00309

  • Shimizu K, Takahashi M, Goshima N, Kawakami S, Irifune K, Morikawa H (2001) Presence of an SAR-like sequence in junction regions between an introduced transgene and genomic DNA of cultured tobacco cells: its effect on transformation frequency. Plant J 26(4):375–384

    Article  CAS  PubMed  Google Scholar 

  • Shoemaker RC (1986) Chloroplast DNA variation in the genus Glycine subgenus soya. J Hered 77:26–30

    Article  CAS  Google Scholar 

  • Siddiq EA, Vemireddy LR, Nagaraju J (2012) Basmati rices: genetics, breeding and trade. Agril Res 1:25

    Article  Google Scholar 

  • Siebert C (2011) Food ark. Natl Geogr 220(1):108–131

    Google Scholar 

  • Simmonds NW (1970) Genetic resources in plants—their exploration and conservation. In: Frankel OH, Bennett E (eds) Experimental agriculture. Blackwell Scientific Publications, Oxford, p 554

    Google Scholar 

  • Singh BP, Srivastava U (2013) Plant genetic resources in Indian perspective. Indian Council of Agricultural Research, New Delhi. ISBN: 978-81-7164-148-2

    Google Scholar 

  • Skinner DZ, Bauchan GR, Auricht G, Hughes S (1999) Developing core collection from a large annual Medicago germplasm collection. In: Johnson RC, Hodgkin T (eds) Core collections for today and tomorrow. International Plant Genetic Resources Institute, Rome, pp 61–67

    Google Scholar 

  • Slabbert R (2004) Drought tolerance, traditional crops and biotechnology: breeding towards sustainable development. South African J Bot 70:116–123

    Article  Google Scholar 

  • Smith NJH (1986) Botanic gardens and Germplasm conservation. Harold L. Lyon Arboretum, University of Hawaii Press, Honolulu

    Google Scholar 

  • Smith JSC, Duvick DN, Smith OS, Cooper M, Feng L (2004) Changes in pedigree backgrounds of Pioneer brand maize hybrids widely grown from 1930 to 1999. Crop Sci 44:1935–1946

    Article  Google Scholar 

  • Sneyers A (2017) Food, drought and conflict: evidence from a case study on Somalia. HiCN Working Paper, 252

    Google Scholar 

  • SOFI [The State of Food Security and Nutrition in the World] (2018) Food security and butrition around the World. Available at: http://www.fao.org/publications/sofi. Accessed on 17 June 2019

  • Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA WUSCHEL signaling in the shoot meristem. Development 143:3238–3248. https://doi.org/10.1242/dev.133645

    Article  CAS  PubMed  Google Scholar 

  • Song QJ, Hyten DL, Jia GF, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3: Genes Genomes Genet 5:1999–2006

    Article  Google Scholar 

  • Spielman D, Kolady D, Ward P (2013) The prospects for hybrid rice in India. Food Security 5:651–665

    Article  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982. https://doi.org/10.1371/journal.pgen.1004982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabbins GL (1957) Genetics, evolution and plant breeding. In: Proceedings of symposium on genetics and plant breeding in South-East Asia, January, 1957, New Delhi, India. Indian J Genet 17:129–141

    Google Scholar 

  • State Forestry Administration of China (2012) The Saving and Conservation Program on Extremely Small Populations in China. https://www-bcf.usc.edu/~forsburg/A

  • Strigens A, Freitag NM, Gilbert X, Grieder C, Riedelsheimer C, Schrag TA, Messmer R, Melchinger AE (2013) Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments. Plant Cell Environ 36(10):1871–1887

    Article  CAS  PubMed  Google Scholar 

  • Struck TH, Feder JL, Bendiksby M, Birkeland S, Cerca J, Gusarov VI (2017) Finding evolutionary processes hidden in cryptic species. Trends Ecol Evol 33:153–163. https://doi.org/10.1016/j.tree.2017.11.007

    Article  PubMed  Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64:17–34

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan MS (1978) Inaugural address. In: National Symposiu on plant and animal genetic resources, December 1978. IARI, New Delhi

    Google Scholar 

  • Swamy MBP, Upadhyaya HD, Goudar PVK (2006) Characterization of Asian core collection of groundnut for morphological traits. Indian J Crop Sci 1(1–2):129–134

    Google Scholar 

  • Szabados L, Kovács I, Oberschall A (2002a) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Kovacs I, Oberschall A, Abraham E, Kerekes I, Zsigmond L, Nagy R, Alvarado M, Krasovskaja I, Gal M (2002b) Distribution of 1000 sequenced T-DNA tags in the Arabidopsis genome. Plant J 32:233–242

    Article  CAS  PubMed  Google Scholar 

  • Taba S, Diaz J, Franco J, Crossa J (1998) Evaluation of Caribbean maize accessions to develop a core subset. Crop Sci 38:1378–1386

    Article  Google Scholar 

  • Tabare A, Magalhaes JR, Parentoni SN, Corderio C, de Andrade RV (1999) The core collection of maize germplasm of Brazil. Plant Genet Res Newslett 117:55–56

    Google Scholar 

  • Tabashnik BE (2010) Communal benefits of transgenic corn. Science 330:189–190

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Hayashi J (1964) Linkage study of two complementary genes for brittle rachis in barley. Bericht des Ohara Instituts fu¨r Landwirtschaftliche Biologie, Okayama 12: 99–105

    Google Scholar 

  • Tamura Y, Hattori M, Yoshioka H, Yoshioka M, Takahashi A, Wu J, Sentoku N, Yasui H (2014) Map-based cloning and characterization of a brown plant hopper resistance gene BPH26 from Oryza sativa L. ssp. indica cultivar ADR52. Scientific Report pp 1–4

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR (2017) Whole-genome analysis of candidate genes associated with seed size and weight in Sorghum bicolor reveals signatures of artificial selection and insights into parallel domestication in cereal crops. Front Plant Sci 8:1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Mace ES, George-Jaeggli B, Hunt C, Cruickshank A, Henzell R, Jordan D (2018) Novel grain weight loci revealed in a cross between cultivated and wild sorghum. Plant Genome 11:1–10

    Article  CAS  Google Scholar 

  • Tavakol E, Bretani G, Rossini L (2017) Natural genetic diversity and crop improvement. In: Pilu R, Gavazzi G (eds) More food: road to survival. Bentham Science Publishers, Sharjah, pp 218–254

    Google Scholar 

  • Teklu Y, Hammer K (2006) Farmers’ perception and genetic erosion of Ethiopian tetraploid wheat landraces. Genet Res Crop Evol 53:1099–1113

    Article  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Nat Acad Sci USA 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thalapati S, Batchu AK, Neelamraju S, Ramanan R (2012) Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct Integrat Genomics 12:277–289

    Article  CAS  Google Scholar 

  • Tikader A, Ananda Rao A (2003) Inter and intra-specific hybridization studies in mulberry (Morus spp.) germplasm. Bull Indian Acad Sericulture (6):17–22

    Google Scholar 

  • Tikader A, Dandin SB (2001) Breeding behaviour of some wild mulberry. Indian Silk 40(1):9–10

    Google Scholar 

  • Tikader A, Kamble CK (2007) Survival potential of different mulberry (Morus Spp.) accessions. Geobios 34:282–286

    Google Scholar 

  • Tikader A, Thangavelu K (2002) Breeding performance of some wild mulberry (Morus Spp.). In: Proceedings of National Conference on recent trends in plant science research 14th–15th November 2002, pp 106–111

    Google Scholar 

  • Tohme J, Jones P, Beebe S, Iwanga M (1995) The combined use of agro-ecological and characterization data to establish the CIAT Phaseolus vulgaris core collection. In: Hodgkin T, Brown AHD, van Hintum MJL, Morales EAV (eds) Core collections of plant genetic resources. A Wiley-Sayee Publications, Chichester, UK, pp 95–107

    Google Scholar 

  • Tomooka N, Lairunhreang C, Nakeeraks P, Egawa Y, Thavarasook C (1992) Center of genetic diversity and dissemination pathways in mungbean deduced from seed protein electrophoresis. Theor Appl Genet 83:289–293

    Article  CAS  PubMed  Google Scholar 

  • Tsegaye B, Berg T (2007) Genetic erosion of Ethiopian tetraploid wheat landraces in Eastern Shewa, Central Ethiopia. Genet Res Crop Evol 54(4):715–726

    Article  Google Scholar 

  • Tyler GM (2004) Sustaining the earth: an integrated approach. Thomson/Brooks/Cole, p 349

    Google Scholar 

  • UCDP [Uppsala Conflict Data Program] (2018). Available at http://ucdp.uu.se/. Accessed 17 June 2019

  • UNEP (2011) Convention on biological diversity. http://hdr.undp.org/en/statistics/

  • UNHCR [United Nation Higher Commission for Refugees] (2018) Global appeal 2018–2019. Available https://www.unhcr.org/publications/fundraising/5a0c05027/unhcr-global-appeal-2018-2019-full-report.html. Accessed 17 June 2019

  • United Nations, Department of Economic and Social Affairs, Population Division (2017) World population prospects: the 2017 revision, key findings and advance tables. Working paper no.ESA/P/WP/248

    Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2002a) Phenotypic diversity for morphological and agronomic characteristics in chickpea core collection. Euphytica 123(3):333–342

    Article  Google Scholar 

  • Upadhyaya HD, Bramel PJ, Ortiz R, Singh S (2002b) Developing a minicore of peanut for utilization of genetic resources. Crop Sci 42:2150–2156

    Article  Google Scholar 

  • Upadhyaya HD, Ortiz R, Bramel PJ, Singh S (2003) Development of a groundnut core collection using taxonomical, geographical, and morphological descriptors. Genet Res Crop Evol 50:139–148

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Sharma NDRK, Ravishankar CR, Albrecht T, Narasimhudu Y, Singh SK, Varshney SK, Reddy VG, Singh S, Dwivedi SL, Wanyera N, Oduri COA, Mgonja MA, Kisandu DB, Parzies HK, Gowda CLL (2010) Developing minicore collection in finger millet using multi-location data. Crop Sci 50:1924–1931

    Article  Google Scholar 

  • Upadhyaya HD, Sharma S, Gowda CLL, Reddy VG, Singh S (2011) Developing proso millet (Panicum miliaceum L.) core collection using geographical and morpho-agronomic data. Crop Pasture Sci 62(5):383–389

    Article  Google Scholar 

  • USEPA [United States Environmental Protection Agency] (2017) Climate change indicators: greenhouse gases. Available at https://www.epa.gov/climate-indicators/greenhouse-gases. Accessed on 17 June 2019

  • Valkoun JJ (2001) Wheat pre-breeding using wild progenitors. Euphytica 119:17–23

    Article  Google Scholar 

  • van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: I. Analysis of the coefficient of parentage matrix. Crop Sci 37:570–579

    Article  Google Scholar 

  • van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010a) Genetic erosion in crops: concept, research results and challenges. Plant genetic resources characterization and utilization. https://doi.org/10.1017/S1479262109990062

    Article  Google Scholar 

  • van de Wouw M, van Hintum T, Kik C, van Treuren R, Visser B (2010b) Genetic diversity trends in twentieth century crop cultivars: a meta analysis. Theor Appl Genet 120:1241–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Knaap E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Berenguer E, Huang Z et al (2014) What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci 5:227

    PubMed  PubMed Central  Google Scholar 

  • Vaughan DA, Balazs E, Heslop-Harrison JS (2007) From crop domestication to super domestication. Annals Bot 100:893–901

    Article  CAS  Google Scholar 

  • Vavilov NI (1926) Studies on the origin of cultivated plants. Bulletin of Applied Botany, Genet and Plant Breed, State Press, Leningrad, USSR 16:1–248

    Google Scholar 

  • Vavilov NI (1935) The phytogeographical basis of plant breeding. In: University of California, Division of Agriculture and Natural Resources. http://pba.ucdavis.edu/files/198376.pdf

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Vavilov NI, Dorofeev FV (1992) Origin and geography of cultivated plants. Cambridge University Press

    Google Scholar 

  • Vellve R (1992) Saving the seeds: genetic diversity and European agriculture. Earthscan Publication, London

    Google Scholar 

  • Verma MM, Kumar J (1974) Breeding for yield in self-pollinators – an introspection and reorientation. Crop Improv 1:15–31

    Google Scholar 

  • Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WS, Mauleon R, Hu ZQ, Chebotarov D, Tai SS, Wu ZC, Li M, Zheng TQ, Fuentes RR, Zhang F et al (2018) Genomic variation in 3010 diverse accessions of Asian cultivated rice. Nature 557:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiguo Z, Cho GT, Ma KH, Chung JW, Gwag JG, Park YJ (2010) Development of an allele minning set in rice using heuristic algorithm and SSR genotype data with least redundancy for the post genomic era. Mol Breed 26(4):639–651

    Article  Google Scholar 

  • Weltzein E (1989) Differentiation among barley landrace populations from the near east. Euphytica 43:29–39

    Article  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson EO (1992) The diversity of life. Penguin, London

    Google Scholar 

  • Wilson EO, Frances MP (1988) Biodiversity. National Academy Press, Washington, DC

    Google Scholar 

  • Windels P, Taverniers I, Depicker A, Van Bockstaele E, De Loose M (2001) Characterisation of the roundup ready soybean insert. Eur Food Res Tech 213(2):107–112

    Article  CAS  Google Scholar 

  • Witcombe JR (1999) Does plant breeding lead to a loss of genetic diversity? In: Wood D, Lenni JM (eds) Agrobiodiversity – characterization, utilization and management. CABI Publishing, London, pp 245–272

    Google Scholar 

  • World Bank (2018a) Life expectancy at birth, total (years). Available at https://data.worldbank.org/indicator/SP.DYN.LE00.IN?view=chart. Accessed on 17 June 2019

  • World Bank (2018b) Population growth (annual %). Available at https://data.worldbank.org/indicator/SP.POP.GROW?view=chart. Accessed on 17 June 2019

  • World Bank (2018c) Agricultural land (% of land area). Available at https://data.worldbank.org/indicator/AG.LND.AGRI.ZS?view=chart. Accessed on 17 June 2019

  • World Bank (2018d) Employment in agriculture (% of total employment) (modeled ILO estimate). Available at https://data.worldbank.org/indicator/sl.agr.empl.zs. Accessed on 17 June 2019

  • Xiao JH, Li JM, Grandillo S, Ahn SN, Yuan LP, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Liu X, Ge S, Jensen JD, Hu FY, Li X, Wang W (2012) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 30:105–111

    Article  CAS  Google Scholar 

  • Xu Y, Li P, Zou C, Lu Y, Xie C, Zhang X, Prasanna BM, Olsen MS (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Rutger N, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen MH, Tai TH, McClung AM (2007) Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci 47:869–878

    Article  Google Scholar 

  • Yang WZ (2017) A sophisticated species conservation strategy for Nyssa yunnanensis, a species with extremely small populations in China. Biodivers Conserv 26:967–981

    Article  Google Scholar 

  • Yao QL, Fan P, Zou SX (2008) Constructing a core collection for maize (Zea mays L.) landrace from wuling mountain region in China. Agril Sci China 7(12):1423–1432

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the Provitamin a (beta-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Zeuli SPL, Qualset CO (1993) Evaluation of five strategies for obtaining a core subset from large genetic resources collection of Triticum durum. Theor Appl Genet 87:295–304

    Article  CAS  PubMed  Google Scholar 

  • Zeven AC, de Wit JMJ (1982) Dictionary for cultivated plants and their regions of diversity excluding most ornamentals, forest trees and lower plants. Center for Agricultural Publishing and Documentary, Wageningen

    Google Scholar 

  • Zhang H, Zhang D, Wang M, Sun J, Qi Y, Li J, Wei X, Qiu Z, Tang S, Li Z (2011) A core collection and mini core collection of Oryza sativa L. in China. Theor Appl Genet 122(1):49–61

    Article  PubMed  Google Scholar 

  • Zhang S et al (2013) Localization of a new gene for bitterness in cucumber. J Heredity 104:134–139

    Article  CAS  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML et al (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in oryza sativa. Nat Commun 2:467

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Feng Q, Lu HY, Li Y, Wang A, Tian QL, Zhan QL, Lu YQ, Huang T, Wang TC et al (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Tian ZX (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotech 33:408–414

    Article  CAS  Google Scholar 

  • Zhu W, Ausin I, Seleznev A, Méndez-Vigo B, Picó FX, Sureshkumar S et al (2015) Natural variation identifies ICARUS1, a universal gene required for cell proliferation and growth at high temperatures in Arabidopsis thaliana. PLoS Genet 11(5):e1005085. https://doi.org/10.1371/journal.pgen.1005085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhukovsky PM (1965) Genetic and botanical irregularities in the evolution of cultivated plants. Genetika Mosc 1:9–41

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Saini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, P. et al. (2020). Molecular Approaches for Harvesting Natural Diversity for Crop Improvement. In: Salgotra, R., Zargar, S. (eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-15-0156-2_3

Download citation

Publish with us

Policies and ethics