Skip to main content

Advertisement

Log in

Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

cDNA-amplified fragment length polymorphism

TDF:

transcript-derived fragment

RT-PCR:

reverse transcription polymerase chain reaction

Q-PCR:

quantitative expression analysis by real-time PCR

UTR:

untranslated region

SNP:

single nucleotide polymorphism

QTL:

quantitative trait locus

MITE:

miniature inverted-repeat transposable element

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid and signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Neuwald AF, Ponting CP (1999) Sec14p-like domains in NF1 and Dbl-like proteins indicate lipid regulation of Ras and Rho signaling. Curr Biol 9:195–197

    Article  Google Scholar 

  • Araus JL, Bort J, Steduto P, Villegas D, Royo C (2003) Breeding cereals for Mediterranean conditions: ecophysilogy clues for biotechnology application. Ann Appl Biol 142:129–141

    Article  Google Scholar 

  • Avrova AO, Venter E, Birch PRJ, Whinsson SC (2003) Profiling and quantifying differential gene transcription in Phytophtora infestans prior to and during the early stages of potato infection. Fungal Genet Biol 40:4–14

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting besed on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, Oomen RJFJ, Visser RGF (1998) Transcript imaging with cDNA-AFLP: a step-by-step protocol. Plant Mol Biol Rep 16:157–173

    Article  CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    Article  PubMed  CAS  Google Scholar 

  • Bankaitis VA, Aitken JF, Cleves AE, Dowhan W (1990) An essential role for a phospholipids transfer protein in yeast Golgi function. Nature 347:561–561

    Article  PubMed  CAS  Google Scholar 

  • Bate N, Twell D (1998) Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol 37:859–869

    Article  PubMed  CAS  Google Scholar 

  • Borg S, Podenphant L, Jensen TJ, Poulsen C (1999) Plant cell growth and differentiation may involve GAP regulation of Rac activity. FEBS Lett 453:341–345

    Article  PubMed  CAS  Google Scholar 

  • Blanco F, Garreton V, Frey N, Dominguez C, Perez-Acle T, Van der Straeten D, Jordana X, Holuigue L (2005) Identification of NP R1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol 59:927–944

    Article  PubMed  CAS  Google Scholar 

  • Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vandehaeghen R, Inze D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 269:173–179

    PubMed  CAS  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JN (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol 132:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Bruggmann R, Abderhalden O, Reymond P, Dudler R (2005) Analysis of epidermis- and mesophyll-specific transcript accumulation in powdery mildew-inoculated wheat leaves. Plant Mol Biol 58:247–267

    Article  PubMed  CAS  Google Scholar 

  • Brugmans B, van der Hulst RG, Visser RG, Lindhout P, van Eck HJ (2003) A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Res 31:e55

    Article  PubMed  Google Scholar 

  • Bureau TE, Wessler SR (1994) Stowaway: a new family inverted repeat elements associated with genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916

    Article  PubMed  CAS  Google Scholar 

  • Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15:796–810

    Article  PubMed  CAS  Google Scholar 

  • Chen G (2005) Drought resistance in wild barley, Hordeum spontaneum, from Israel: physiology, gene identification, and QTL mapping. Ph.D. Dissertation, Institute of Evolution, University of Haifa, Israel

  • Diab A, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley. Theor Appl Genet 109:1417–1425

    Article  PubMed  CAS  Google Scholar 

  • Donson J, Fang YW, Espiritu-Santo G, Xing WM, Salazar A, Miyamoto S, Armendarez V, Volkmuth W (2002) Comprehensive gene expression analysis by transcript profiling. Plant Mol Biol 48:75–97

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (1994) Comparison of the genetic organization of the early salt stress response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    Article  CAS  Google Scholar 

  • Dubos C, Plomion C (2003) Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait.) roots. Plant Mol Biol 51:249–262

    Article  PubMed  CAS  Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Ezcurra I, Ellestrom M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709

    Article  PubMed  CAS  Google Scholar 

  • Feng Y (2003) Plant MITEs: useful tools for plant genetics and genomics. Genomics Proteomics Bioinformatics 2:90–99

    Google Scholar 

  • Feschotte C, Zhang X, Wessler SR (2002) Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In: Craig N.L., Craigie R., Gellert M., Lambowitz A.M (eds) Mobile DNA II. ASM Press, Washington, DC, pp 1147–1158

    Google Scholar 

  • Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891

    Article  PubMed  CAS  Google Scholar 

  • Gulick PJ, Drouin S, Yu Z, Danyluk J, Poisson G, Monroy AF, Sarhan F (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    PubMed  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hao Y-J, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T (2005) Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene 350:41–50

    Article  PubMed  CAS  Google Scholar 

  • Hazen SP, Wu Y, Kreps JA (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integ Genomics 3:105–111

    Article  CAS  Google Scholar 

  • Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen H (2005) Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integ Genomics 5:104–116

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Functional Analysis of Rice DREB1/CBF-type Transcription Factors Involved in Cold-responsive Gene Expression in Transgenic Rice. Plant and Cell Physiol 47:141–153

    Article  CAS  Google Scholar 

  • Jiang C, Iu B, Singh J (1996) Requirement of a CCGAC cis-acting element for cold induction of the bn115 gene from winter Brassica napus. Plant Mol Biol 30:679–684

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Routt SM, Bankaitis VA, Brujin FJ (2001) Nodule-specific regulation of phosphatidylinositol transfer protein expression on Lotus japonicus. Plant Cell 13:1369–1382

    Article  PubMed  CAS  Google Scholar 

  • Kim BH, von Arnim AG (2006) The early dark-response in Arabidopsis thaliana revealed by cDNA microarray analysis. Plant Mol Biol 60:321–342

    Article  PubMed  CAS  Google Scholar 

  • Knight CA, Vogel H, Kroymann J, Shumate A, Witsenboer H, Mitchell-Olds T (2006) Expression profiling and local adaptation of Boechare holboellii populations for water use efficiency across a natural occurring water stress gradient. Mol Ecol 15:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation. Plant J 23:663–676

    Article  PubMed  CAS  Google Scholar 

  • Langridge P, Paltridge N, Fincher G (2006) Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics and Proteomics 4:343–354

    Article  PubMed  CAS  Google Scholar 

  • Lemichez E, Wu Y, Sanchez JP, Mettouchi A, Mathur J, Chua NH (2001) Inactivation of AtRac1 by abscisic acid is essential for stomatal closure. Gene 15:1808–1816

    CAS  Google Scholar 

  • Li ZY, Chen SY (2000) Differential accumulation of the S-adenosylmethionine decarboxylase transcript in rice seedlings in response to salt and drought stress. Theor Appl Genet 100:782–788

    Article  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zhao TJ, Liu JM, Liu WQ, Liu Q, Yan YB, Zhou HM (2006) The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS Lett 580:1303–1308

    Article  PubMed  CAS  Google Scholar 

  • Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 95:5905–5909

    Article  Google Scholar 

  • Maimann S, Wagner C, Kreft O, Zeh M, Willmitzer L, Hofgen R, Hesse H (2000) Transgenic potato plants reveal the indispensable role of cystathionine β-lyase in plant growth and development. Plant J 23:747–758

    Article  PubMed  CAS  Google Scholar 

  • Meksem K, Ruben E, Hyten D, Triwitayakom K, Lightfoot DA (2001) Conversing of AFLP bands into high-throughput DNA markers. Mol Genet Genomics 256:207–214

    Google Scholar 

  • Mester D, Ronin Y, Korol A, Nevo E (2004) Fast and high precision algorithms for optimization in large scale genomic problems. Comput Biol Chem 28:281–290

    Article  PubMed  CAS  Google Scholar 

  • Monks DE, Aghoram K, Courtney PD, DeWald DB, Dewey R (2001) Hyperosmotic stress induces the rapid phosphorylation of a soybean phosphatidylinositol transfer protein homolog through activation of the protein kinases SPK1 and SPK2. Plant Cell 13:1205–1219

    Article  PubMed  CAS  Google Scholar 

  • Morita A, Umemura T, Kuroyanagi M, Futsuhara Y, Perata P, Yamaguchi J (1998) Functional dissection of a sugar-repressed alpha-amylase gene (RamylA) promoter in rice embryos. FEBS Lett 423:81–85

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Springer Verlag, Heidelberg, pp 364

    Google Scholar 

  • Nevo E, Zohary D, Brown AHD, Haber M (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33:815–833

    Article  CAS  Google Scholar 

  • Nguyen TTT, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena ACM, Pathan MS, Nguyen HT (2004) Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics 272:35–46

    Article  PubMed  CAS  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    Article  PubMed  CAS  Google Scholar 

  • Owuor ED, Beharav A, Fahima T, Kirzhner VM, Korol A, Nevo E (2003) Microscale ecological stress causes RAPD molecular selection in wild barley, Neve Yaar microsite, Israel. Genet Resour Crop Evol 50:213–224

    Article  CAS  Google Scholar 

  • Ozkan H, Kafkas S, Ozer MS, Brandolini A (2005) Genetic relationships among South-East Turkey wild barley populations and sampling strategies of Hordeum spontaneum. Theor Appl Genet 112:12–20

    Article  PubMed  Google Scholar 

  • Park HC, Kim ML, Kang YH, Jeon JM, Yoo JH, Kim MC, Park CY, Jeong JC, Moon BC, Lee JH, Yoon HW, Lee SH, Chung WS, Lim CO, Lee SY, Hong JC, Cho MJ (2004) Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  PubMed  CAS  Google Scholar 

  • Peterman T K, Ohol Y M, McReynolds L J, Luna E J (2004) Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Plant Physiol 136:3080–3094

    Article  PubMed  CAS  Google Scholar 

  • Plesch G, Ehrhardt T, Mueller-Roeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28:455–464

    Article  PubMed  CAS  Google Scholar 

  • Pozueta-Romero J, Houlné G, Schantz R (1996) Nonautonomus inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 171:147–153

    Article  PubMed  CAS  Google Scholar 

  • Rampino P, Pataleo S, Gerard C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes Plant, Cell Envir Online Early doi:10.1111/j.1365–3040.2006.01588

  • Reijans M, Lascaris R, Groeneger AO, Wittenberg A, Wesselink K, van Oeveren J, de Wit E, Boorsma A, Voetdijk B, van der Spek H, Grivell LA, Simons G (2003) Quantitative comparison of cDNA-AFLP, microarrays, and GeneChip expression data in Sacchromyces cerevisiae. Genomics 82:606–618

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Canales E, Borroto CJ, Carmona E, Lopez J, Pujol M, Borras-Hidalgo O (2006) Identification of genes induced upon water-deficit stress in a drought-tolerant rice cultivar. J Plant Physiol 63:577–584

    Article  CAS  Google Scholar 

  • Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 275:159–168

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increase polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Ed 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Simpson SD, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J 33:259–270

    Article  PubMed  CAS  Google Scholar 

  • Stougaard J, Jorgensen JE, Christensen T, Khule A, Marcker KA (1990) Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc3 and N23 gene promoters. Mol Gen Genet 220:353–360

    Article  PubMed  CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U, Genschik P (2005) Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant J 43:437–448

    Article  PubMed  CAS  Google Scholar 

  • Thum KE, Kim M, Morishige DT, Eibl C, Koop HU, Mullet JE (2001) Analysis of barley chloroplast psbD light-responsive promoter elements in transplastomic tobacco. Plant Mol Biol 47:353–366

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  PubMed  CAS  Google Scholar 

  • Turpeinen T, Vanhala T, Nevo E, Nissila E (2003) AFLP genetic polymorphism in wild barley (Hordeum spontaneum) populations in Israel. Theor Appl Genet 106:1333–1339

    PubMed  CAS  Google Scholar 

  • Umezawa T, Mizuno K, Fugimura T. 2002 Discrimination of genes expressed in response to the ionic or osmotic effect of salt stress in soybean with cDNA-AFLP. Plant Cell & Environ 25:1619–1625

    Article  Google Scholar 

  • Vincent P, Chua M, Nogue F, Fairbrother A, Mekeel H, Xu Y, Allen N, Bibikova TN, Gilroy S, Bankaitis VA (2005) A Sec14p-nodulin domain phosphatidylinositol transfer protein polarizes membrane growth of Arabidopsis thaliana root hairs. J Cell Biol 168:801–812

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2006) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  CAS  Google Scholar 

  • Volkmuth W, Turk S, Shapiro A, Fang Y, Kiegle E, Haaren M, Donson J (2003) Technical advances: genome-wide cDNA-AFLP analysis of the Arabidopsis transcriptome. OMICS 7:143–159

    Article  PubMed  CAS  Google Scholar 

  • Wadkins RM, Tung C-S, Valone PM, Benight AS (2000) The role of the loop in binding of an actinomycin D analog to hairpins formed by single-stranded DNA. Arch Biochem Biophys 384:199–203

    Article  PubMed  CAS  Google Scholar 

  • Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in plant growth and development. Plat Physiol 113:1009–1013

    Article  CAS  Google Scholar 

  • Wessler SR, Bureau TE, White SE (1995) LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Li H, Yang Z (2000) Arabidopsis RopGAPs are a novel family of Rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for Rop-specific GTPase stimulation. Plant Physiol 124:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Dong J, Chandrasekharan MB, Hall TC (2001) Kiddo, a new transposable element family closely associated with rice genome. Mol Genet Genomics 266:417–424

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zheng B, Mao C, Yi K, Liu F, Wu Y, Tao Q, Wu P (2003) cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene 314:141–148

    Article  PubMed  CAS  Google Scholar 

  • Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14:375–388

    Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

  • Zhong R, Ye Z-H (2003) Unraveling the functions of glycosyltransferase family 47 in plants. Trends Plant Sci 8:565–568

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the German-Israeli Cooperation Project (DIP project No. DIP-B 4.3) funded by the BMBF and supported by BMBF’s International Bureau at the DLR; The Israeli Science Foundation (grants No. 1089/04, 9030/96, 9048/99, and 9019/01), Ministry of Science and Technology, Research Networks Program in Sustainable Agriculture between France and Israel; and the financial support of the Israel Discount Bank Chair of Evolutionary Biology and the Ancell-Teicher Research Foundation for Molecular Genetics and Evolution. We wish to thank Herman Van Eck for his assistance with cDNA-AFLP analysis; Guoxiong Chen for providing the mapping population; Hanan Sela for access to the program DNA mfold; Alan Schulman for helpful discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Korol.

Additional information

The sequences reported in this paper have been deposited in the NCBI and dbEST databases. The accession numbers are incorporated in the text. The accession number of Hsdr4 is DQ464370. The accession numbers of the ESTs are: TDF-2, EB174194; TDF-3, EB174195; TDF-4, EB174196; TDF-5, EB174197; TDF-7, EB174198; TDF-9, EB174199; TDF-10, EB174200; TDF-11, EB174201; TDF-12, EB174202; TDF-13, EB174203; TDF-14, EB174204.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suprunova, T., Krugman, T., Distelfeld, A. et al. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64, 17–34 (2007). https://doi.org/10.1007/s11103-006-9131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9131-x

Keywords

Navigation