Skip to main content
Log in

QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A QTL analysis was performed to determine the genetic basis of 13 horticultural traits conditioning yield in pepper (Capsicum annuum). The mapping population was a large population of 297 recombinant inbred lines (RIL) originating from a cross between the large-fruited bell pepper cultivar ‘Yolo Wonder’ and the small-fruited chilli pepper ‘Criollo de Morelos 334’. A total of 76 QTLs were detected for 13 fruit and plant traits, grouped in 28 chromosome regions. These QTLs explained together between 7% (internode growth time) and 91% (fruit diameter) of the phenotypic variation. The QTL analysis was also performed on two subsets of 141 and 93 RILs sampled using the MapPop software. The smaller populations allowed for the detection of a reduced set of QTLs and reduced the overall percentage of trait variation explained by QTLs. The frequency of false positives as well as the individual effect of QTLs increased in reduced population sets as a result of reduced sampling. The results from the QTL analysis permitted an overall glance over the genetic architecture of traits considered by breeders for selection. Colinearities between clusters of QTLs controlling fruit traits and/or plant development in distinct pepper species and in related solanaceous crop species (tomato and eggplant) suggests that shared mechanisms control the shape and growth of different organs throughout these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barchi L, Bonnet J, Boudet C, Signoret P, Nagy I, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution intraspecific linkage map of pepper (Capsicum annuum L.) and selection of reduced RIL subsets for fast mapping. Genome 50:51–60

    Article  PubMed  CAS  Google Scholar 

  • Barrero L-S, Tanksley S-D (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross-section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  PubMed  CAS  Google Scholar 

  • Basten C-J, Weir B-S, Zeng ZB (2002) QTL cartographer, version 1.16. Department of Statistics. North Carolina State University, Raleigh

    Google Scholar 

  • Ben Chaim A, Paran I, Grube R-C, Jahn M, van Wijk R, Peleman J (2001) QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theor Appl Genet 102:1016–1028

    Article  Google Scholar 

  • Ben Chaim A, Borovsk E, Rao G-U, Tanyolac B, Paran I (2003a) Fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46:1–9

    Article  PubMed  CAS  Google Scholar 

  • Ben Chaim A, Borovsky E, De Jong W, Paran I (2003b) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Google Scholar 

  • Ben Chaim A, Borovsky J, Rao G, Gur A, Zamir D, Paran I (2006) Comparative QTL mapping of fruit size and shape in tomato and pepper. Isr J Plant Sci 54:191–203

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single donor introgressions for desirable wild QTL alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Birolleau-Touchard C, Hanocq E, Bouchez A, Bauland C, Dourlen I, Seret J-P, Rabier D, Hervet S, Allienne J-F, Lucas P-H, Jaminon O, Etienne R, Baudhuin G, Giauffret C (2007) The use of MapPop1.0 for choosing a QTL mapping sample from an advanced backcross population. Theor Appl Genet 114:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Vision T (2000) MapPop 1.0: software for selective mapping and bin mapping. http://www.bio.unc.edu/faculty/vision/lab/mappop/

  • Charcosset A, Gallais A (1996) Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor Appl Genet 93:1193–1201

    Article  Google Scholar 

  • Charmet G (2000) Power and accuracy of QTL detection: simulation studies of one-QTL models. Agronomie 20:309–323

    Article  Google Scholar 

  • Churchill G-A, Doerge R-V (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs. Recovering QTL identical-by-descent status information from marker data. Genetics 168:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • De Vicente M-C, Tanksley S-D (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Doganlar S, Frary A, Daunay M-C, Lester R-N, Tanksley S-D (2002) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726

    PubMed  CAS  Google Scholar 

  • Djian-Caporalino C, Lefebvre V, Sage-Daubèze, A-M, Palloix A (2006) Capiscum. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 3. Vegetable crops, CRC Press, Boca Raton, pp 185–243

  • Frary A, Doganlar S, Daunay M-C, Tanksley S-D (2003) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor Appl Genet 107:359–370

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fulton T-M, Zamir D, Tanksley S-D (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Gallais A, Rives M (1993) Detection, number and effects of QTL for a complex character. Agronomie 13:723–738

    Article  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1–19

    Article  Google Scholar 

  • Grandillo S, Ku H-M, Tanksley S-D (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Hackett C-A (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585–599

    Article  PubMed  CAS  Google Scholar 

  • Haley C-S, Andersson L (1997) Linkage mapping of quantitative trait loci in plants and animals. In: Dear PH (ed) Genome mapping. A practical approach. Oxford University Press, Oxford, pp 49–71

    Google Scholar 

  • Inzé D (2005) Green light for the cell cycle. EMBO J 24:657–662

    Article  PubMed  Google Scholar 

  • IPGRI, AVRDC, and CATIE (1995) Descriptors for Capsicum, International Plant Genetic Resources Institute. Rome, Italy; the Asian Research and Development Center, Tapei, Taiwan and The Centro Agronomico Tropical de Investigacion y Ensenanza, Turrialba, Costa Rica, p 49. http://www.ipgri.cgiar.org

  • Jansen R-C, Van Ooijen J-M, Stam P, Lister C, Dean C (1995) Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor Appl Genet 91:33–37

    Article  CAS  Google Scholar 

  • Jiménez-Gómez J-M, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martínez-Zapater J-M (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50:303–315

    Article  PubMed  Google Scholar 

  • Ku H-M, Doganlar S, Chen K-Y, Tanksley S-D (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9:844–850

    Article  Google Scholar 

  • Lander E-S, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lefebvre V (2005) Molecular markers for genetics and breeding: development and use in pepper (Capsicum spp.). In: Lörz H and Wenzel G (eds) Molecular marker systems in plant breeding and crop improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, pp 189–214

  • Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease, a case study, the interaction pepper—Phytophthora capsici Leonian. Theor Appl Genet 93:503–511

    Article  CAS  Google Scholar 

  • Lippman Z, Tanksley S-D (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species L. pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Livingstone K-D, Lackney V-K, Blauth J-R, van Wijk R, Jahn M-K (1999) Genome mapping in capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Melchinger A-E, Utz H-F, Schoon C-C (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58(14):3841–3852

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred line population. Genome 40:242–248

    Article  PubMed  CAS  Google Scholar 

  • Rao G-U, Ben Chaim A, Borovsky Y, Paran I (2003) Mapping of yield-related QTL in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    PubMed  CAS  Google Scholar 

  • Tanksley S-D (1993) Mapping polygenes. Ann Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S-D, Ganal M-W, Prince J-P, de Vicente M-C, Bonierbale M-W, Broun P, Fulton T-M, Giovannoni J-J, Grandillo S, Martin J-B, Messeguer R, Miller J-C, Miller L, Paterson A-H, Pineda O, Roder M-S, Wing R-A, Wu W, Young N-D (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. http://www.R-project.org

  • Utz H-F, Melchinger A-E, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Vales M, Schon C, Capettini F, Chen X, Corey A, Mather D, Mundt C, Richardson K, Sandoval-Islas J, Utz H, Hayes P (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Van Eck H-J, Jacobs J-M, Stam P, Ton J, Stiekema W-J, Jacobsen E (1994) Multiple alleles for tuber shape in diploid potato detected by qualitative and quantitative genetic analysis using RFLPs. Genetics 137:303–309

    PubMed  Google Scholar 

  • Voorrips R-E (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z-B (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zygier S, Chaim A-B, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTL mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The salary of L. Barchi was supported by a grant of the C·I.P.E. (Resolution 17/2003) from the Italian Ministry of Agricultural Alimentary and Forest Politics. The authors thank P. Signoret, G. Nemouchi and T. Phaly for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Palloix.

Additional information

Communicated by F. van Eeuwijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barchi, L., Lefebvre, V., Sage-Palloix, AM. et al. QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118, 1157–1171 (2009). https://doi.org/10.1007/s00122-009-0970-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0970-0

Keywords

Navigation