Skip to main content
Log in

A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Previous studies using ‘Hass’ avocado and its small fruit (SF) phenotype as a model showed that SF is limited by cell number, not by cell size. In an attempt to explore the molecular mechanisms regulating avocado fruit cell division, we isolated four distinct avocado cell proliferation-related genes and investigated their expression characteristics, comparing normal fruit (NF) and SF developmental patterns. Three cDNAs termed PaCYCA1, PaCYCB1 and PaPCNA, encoding two mitotic cyclins and a proliferating cell nuclear antigen (PCNA), were first isolated from young NF tissues. The accumulation of their transcripts was predominant in mitotically active organs, including young fruitlets, leaves and roots. Furthermore, a fourth full-length cDNA, designated Pafw2.2-like, encoding a FW2.2 (fruit-weight)-like protein, was isolated from SF tissues. FW2.2 is postulated to function as a negative regulator of cell division in tomato fruit. Remarkably, northern analysis revealed that the accumulation of the mitotic cyclins and of PCNA transcripts gradually decreased in NF tissues during growth, whereas in SF, their levels had already decreased at earlier stages of fruit development, concomitant with an earlier arrest of fruit cell division activity. In contrast, parallel sq-RT-PCR analysis showed that Pafw2.2-like mRNA accumulation was considerably higher in SF tissues than in the same NF tissues essentially at all examined stages of fruit growth. Together, our data suggest essential roles for the two mitotic cyclins genes and the PCNA gene in regulating avocado fruit development. Furthermore, the possibility that Pafw2.2-like acts as does fw2.2 in tomato, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayyagari R, Impellizzeri KJ, Yoder BL, Gary SL, Burgers PM (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15:4420–4429

    CAS  PubMed  Google Scholar 

  • Baldet P, Devaux C, Chevalier C, Brouquisse R, Just D, Raymond P (2002) Contrasted responses to carbohydrate limitation in tomato fruit at two stages of development. Plant Cell Environ 25:1639–1649

    Article  CAS  Google Scholar 

  • Baldet P, Hernould M, Laporte F, Mounet F, Just D, Mouras A, Chevalier C, Rothan C (2006) The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants. J Exp Bot 57:961–970

    Article  CAS  PubMed  Google Scholar 

  • Bourdon M, Frangne N, Mathieu-Rivet E, Nafati M, Cheniclet C, Renaudin JP, Chevalier C (2009) Endoreduplication and growth of fleshy fruits. In: Luttge U, Beyschlag W, Budel B, Francis D (eds) Progress in botany, vol 71. Springer, Heidelberg, pp 102–132

    Google Scholar 

  • Chanderbali AS, Albert V, Ashworth VE, Clegg MT, Litz RE, Soltis DE, Soltis PS (2008) Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. Bioessays 30:386–396

    Article  PubMed  Google Scholar 

  • Chaubet-Gigot N (2000) Plant A-type cyclins. Plant Mol Biol 43:659–675

    Article  CAS  PubMed  Google Scholar 

  • Chevalier C (2007) Cell cycle control and fruit development. In: Inze D (ed) Cell cycle control and plant development, annual plant reviews, vol 32. Oxford, UK, pp 269–290

    Chapter  Google Scholar 

  • Church G, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Churchman ML, Brown ML, Kato N, Kirik V, Hulskamp M, Inze D, De Veylder L, Walker JD, Zheng Z, Oppenheimer DG, Gwin T, Churchman J, Larkin JC (2006) SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. Plant Cell 18:3145–3157

    Article  CAS  PubMed  Google Scholar 

  • Citterio S, Sgorbati S, Levi M, Colombo BM, Sparvoli E (1992) PCNA and total nuclear protein content as markers of cell proliferation in pea tissue. Cell Sci 102:71–78

    CAS  Google Scholar 

  • Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene co-option in the evolution of a novel organ. Plant Mol Biol 62:867–880

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13711

    Article  CAS  PubMed  Google Scholar 

  • Cowan AK, Moore-Gordon CS, Bertling I, Wolstenholme BN (1997) Metabolic control of avocado fruit growth. Plant Physiol 114:511–518

    CAS  PubMed  Google Scholar 

  • Cowan AK, Cripps RF, Richings EW, Taylor NJ (2001) Fruit size: toward an understanding of metabolic control of fruit growth using avocado as a model system. Physiol Plant 111:127–136

    Article  CAS  Google Scholar 

  • Cowan AK, Taylor NJ, van Staden J (2005) Hormone homeostasis and induction of the small-fruit phenotype in ‘Hass’ avocado. Plant Growth Regul 45:11–19

    Article  CAS  Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ (2009) Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol 12:98–107

    Article  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87:297–306

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Dieter J, Zou J, Spielbauer D, Ducan KE, Howard RJ, Hou Z, Simmons CR (2010) Cell number regulator1 affects plant and organ size in maize: implication for crop yield enhancement and heterosis. Plant Cell. doi:10.1105/tpc.109.073676

  • Gutierrez R, Quiroz-Figueroa F, Vazquez-Ramos JM (2005) Maize cyclin D2 expression, associated kinase activity and effect of phytohormones during germination. Plant Cell Physiol 46:166–173

    Article  CAS  PubMed  Google Scholar 

  • Hata S, Kouchi H, Tanaka Y, Minami E, Matsumoto T, Suzuka I, Hashimoto J (1992) Identification of carrot cDNA clones encoding a second putative proliferating cell-nuclear antigen, DNA polymerase delta auxiliary protein. Eur J Biochem 203:367–371

    Article  CAS  PubMed  Google Scholar 

  • Herrera I, Sanchez MP, Molina J, Plasencia J, Vazquez-Ramos JM (2000) Proliferation cell nuclear antigen expression in maize seed development and germination: regulation by phytohormones and its association with putative cell cycle proteins. Physiol Plant 110:127–134

    Article  CAS  Google Scholar 

  • Inze D (2005) Green light for the cell cycle. EMBO J 24:657–662

    Article  CAS  PubMed  Google Scholar 

  • Inze D, Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40:77–105

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Riou-Khamlichi C, Roche O, Perennes C, Bergounioux C, Glab N (2002) The CDK inhibitor NtKIS1a is involved in plant development, endoreduplication and restores normal development of cyclin D3; 1-overexpressing plants. J Cell Sci 115:973–982

    CAS  PubMed  Google Scholar 

  • Jonsson ZQ, Hindges R, Hubscher U (1998) Regulation of DNA replication and repair proteins through interaction with the font side of proliferating cell nuclear antigen. EMBO J 17:2412–2425

    Article  CAS  PubMed  Google Scholar 

  • Joubes J, Chevalier C (2000) Endoreduplication in higher plants. Plant Mol Biol 43:735–745

    Article  CAS  PubMed  Google Scholar 

  • Joubes J, Walsh D, Raymond P, Chevalier C (2000) Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta 211:430–443

    Article  CAS  PubMed  Google Scholar 

  • Katti MV, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications. Protein Sci 9:1203–1209

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kato-Emori S, Tomita K, Ezura H (2002) Detection of 3-hydroxy-3-methylglutaryl-coenzyme A reductase protein Cm-HMGR during fruit development in melon (Cucumis melo L.). Theor Appl Genet 104:779–785

    Article  CAS  PubMed  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Zhang X-C, Govindarajulu M, Qiu J, Ong YT, Brechenmacher L, Howard Berg R, Hurley-Sommer A, Taylor CG, Stacey G (2010) A member of the highly conserved FWL (tomato FW2.2-like) gene family is essential for soybean nodule organogenesis. Plant J. doi:10.1111/j.1365-313X.2010.04201.x

  • Lopez I, Khan S, Vazquez J, Hussey PJ (1997) The proliferating cell nuclear antigen (PCNA) gene family in Zea mays is composed of two members that have similar expression programs. Biochim Biophys Acta 1353:1–6

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucleic Acids Res 33:192–196

    Article  Google Scholar 

  • Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679

    Article  CAS  PubMed  Google Scholar 

  • Moore-Gordon CS, Cowan AK, Bertling I, Botha CEJ, Cross RHM (1998) Symplastic solute transport and avocado fruit development: a decline in Cytokinin/ABA ratio is related to appearance of the ‘Hass’ small fruit variant. Plant Cell Physiol 39:1027–1038

    CAS  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon, Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    CAS  PubMed  Google Scholar 

  • Or E, Vilozny I, Eyal Y, Ogrodovitch A (2000) The transduction of the signal for grape bud dormancy breaking induced by hydrogen cyanamide may involve the SNF-like protein kinase GDBRPK. Plant Mol Biol 43:483–489

    Article  CAS  PubMed  Google Scholar 

  • Pettko-Szandtner A, Meszaros T, Horvath GV, Bako L, Csordas-Toth E, Blastyak A, Zhiponova M, Miskolczi P, Dudits D (2006) Activation of an alfalfa cyclin-dependent kinase inhibitor by calmodulin-like domain protein kinase. Plant J 46:111–123

    Article  CAS  PubMed  Google Scholar 

  • Prelich G, Tan CK, Kostura M, Mathews MB, So AG, Downey KM, Stillman B (1987) Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326:517–520

    Article  CAS  PubMed  Google Scholar 

  • Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inze D, Jacobs T, Kouchi H, Rouze P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JA (1996) Plant cyclins: a unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. Plant Mol Biol 32:1003–1018

    Article  CAS  PubMed  Google Scholar 

  • Renaudin JP, Savoure A, Philippe H, Van Montagu M, Inze D, Rouze P (1998) Characterization and classification of plant cyclin sequences related to A-and B-type cyclins. In: Francis D, Duditz D, Inze D (eds) Plant cell division. Portland Press, London, pp 67–98

    Google Scholar 

  • Richings EW, Cripps RF, Cowan AK (2000) Factors affecting ‘Hass’ avocado fruit size: carbohydrate, abscisic acid and isoprenoid metabolism in normal and phenotypically small fruit. Physiol Plant 109:81–89

    Article  CAS  Google Scholar 

  • Riou-khamlichi C, Menges M, Healy JMS, Murray JAH (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  CAS  PubMed  Google Scholar 

  • Schroeder CA (1953) Growth and development of the “Fuerte” avocado fruit. Proc Am Soc Hort Sci 68:253–258

    Google Scholar 

  • Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    Article  CAS  PubMed  Google Scholar 

  • Strzalka W, Oyama T, Tori K, Morikawa K (2009) Crystal structures of the Arabidopsis thaliana proliferating cell nuclear antigen 1 and 2 proteins complexed with the human p21 C-terminal segment. Protein Sci 18:1072–1080

    Article  CAS  PubMed  Google Scholar 

  • Strzalka W, Kaczmarek A, Naganowska B, Ziemienowicz A (2010) Identification and functional analysis of PCNA1 and PCNA-like1 genes of Phaseolus coccineus. J Exp Bot 61:873–888

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:1–10

    Article  Google Scholar 

  • Swiatek A, Lenjou M, van Bockstaele D, Inze D, van Onckelen H (2002) Differential effect of Jasmonic acid and Abscisic acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  CAS  PubMed  Google Scholar 

  • Tanksley S (2004) The genetic developmental and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  CAS  PubMed  Google Scholar 

  • Taylor NJ, Cowan AK (2001) Plant hormone homeostasis and control of avocado fruit size. Plant Growth Regul 35:247–255

    Article  CAS  Google Scholar 

  • Touneille M, Saint-Jean B, Rome C, Couillaud F, Castroviejo M, Benedetto JP (2002) Two distinct proliferating cell nuclear antigens are present in the wheat cell. Plant Physiol Biochem 40:743–748

    Article  Google Scholar 

  • Wang H, Qi Q, Schorr P, Cutler AJ, Crosby WL, Fowke LC (1998) ICK1, a cyclin-dependent protein kinase inhibitor from Arabidopsis thaliana interacts with both Cdc2a and CycD3, and its expression is induced by abscisic acid. Plant J 15:501–510

    Article  PubMed  Google Scholar 

  • Wang H, Kong H, Sun Y, Zhang W, Altman N, dePamphilis CW Ma H (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol 135:1084–1099

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou Y, Bird DA, Fowke LC (2008) Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors. J Microsc 231:234–246

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Zhang H, Beach D (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71:505–514

    Article  CAS  PubMed  Google Scholar 

  • Zilkah S, Klein I (1987) Growth kinetics and determination of shape and size of small and large avocado fruits cultivar ‘Hass’ on the tree. Sci Hort 32:195–202

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Gad Ish-Am and Dr. Leo Winner for kindly helping us determine the full bloom period, based on honeybee visits to the trees, the technical assistance of Mr. Moshe Goren as well as Kibbutz Shiller for providing us access to their ‘Hass’ avocado orchard, enabling us to collect avocado fruits. This work was supported by grant No. 203-0708 from the Chief Scientist of the Ministry of Agriculture, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vered Irihimovitch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figures (PDF 2,553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, Y., Rosenfeld, R., Zadiranov, V. et al. A proposed conserved role for an avocado fw2.2-like gene as a negative regulator of fruit cell division. Planta 232, 663–676 (2010). https://doi.org/10.1007/s00425-010-1200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1200-3

Keywords

Navigation