Skip to main content
Log in

Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

To understand geographical distribution of the genetic diversity of rice cultivars (Oryza sativa L.) and its trends in recent fifty years in China, 453 accessions were analyzed by 36 microsatellites loci and 42 phenotypic traits. Results revealed that the genetic diversity by SSRs is highly consistent with that by phenotypic traits and the genetic diversity of indica cultivars was higher than that of japonica cultivars; the genetic diversity of cultivars declined from 1950s to 1980s and then increased greatly; among the six rice ecological zones (REZs), genetic diversity of REZ II was the highest and those of REZ V and REZ VI were the lowest at both DNA and phenotypic level. Jiangsu and Jiangxi provinces in the middle and lower reaches of Yangtze River and Sichuan province in southwest of China were the areas with the highest genetic diversity. Breeders in REZ V which is an important japonica rice area but with very low genetic diversity should explore more gene resources to widen the genetic backgrounds of cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Normile, D., Variety spices up Chinese rice yield, Science, 2000, 289: 1119–1120.

    Google Scholar 

  2. Tilman, D., The greening of the green revolution, Nature, 1998, 396, 211–212.

    Article  Google Scholar 

  3. Zhu, Y. Y., Chen, H. R., Fan, J. H. et al., Genetic diversity and disease control in rice, Nature, 2000, 406: 718–722.

    Article  Google Scholar 

  4. Donini, P., Law, J. R., Koebner, R. M. D. et al., Temporal trends in the diversity of UK wheat, Theor. Appl. Genet., 2000, 100: 912–917.

    Article  Google Scholar 

  5. Tian, Q. Z., Zhou, R. H., Jia, J. Z., Genetic diversity trend of common wheat (Triticum aestivum L.) in China revealed with AFLP markers, Genetic Resources and Crop Evolution, 2005, 52: 325–331.

    Article  Google Scholar 

  6. Petra, O., Catherine, C. B., Ralf, S. P., A genetic analysis of quantitative resistance to late blight in potato: Towards marker-assisted selection, Mol. Breed., 1999, 5: 399–415.

    Google Scholar 

  7. Ullstrup, A. J., Evolution and dynamics of corn diseases and insect problems since the advent of hybrid corn, in Maize Breeding and Genetics (eds. Walden, D. B.), New York: Wiley-Interscience, 1978, 283–297.

    Google Scholar 

  8. Wei, X. H., Tang, S. X., Jiang, Y. Z. et al., The isoenzyme diversity of China improved rice and the correlation with diversity of phenotype, Chinese J. Rice Sci. (in Chinese), 2003, 17: 123–128.

    Google Scholar 

  9. Lin, S. C., Min, S. K., Rice Varieties and their Genealogy in China (in Chinese), Shanghai: Shanghai Science and Technology Press, 1992, 282–292.

    Google Scholar 

  10. Zhuang, J. Y., Qian, H. R., Lu, J., Pre-research on the genetic and variance of Indica cultivar, Agricultural Science in China (in Chinese), 1996, 29(2): 17–22.

    Google Scholar 

  11. Sun, C. Q., Wang, X. K., Li, Z. C. et al., Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.) using RFLP markers, Theor. Appl. Genet., 2001, 102: 157–162.

    Article  Google Scholar 

  12. Virk, P., Ford-Lloyd, B. V., Jackson, M. T. et al., The use of RAPD for the study of diversity of diversity within germplasm collections, Heredity, 1996, 74: 170–179.

    Google Scholar 

  13. Vos, P., Hogers, R., Bleeker, M. et al., AFLP: A new technique for DNA fingerprinting, Nucleic Acids Res., 1995, 23: 4407–4414.

    Google Scholar 

  14. Yang, G. P., Maroof, M. A., Xu, C. G. et al., Comparative analysis of microsatellite DNA polymorphism in landraces and cultivars of rice, Mol. Gen. Genet., 1994, 245: 187–194.

    Article  Google Scholar 

  15. Tautz, D., Hypervariability of simple sequence as a general source of polymorphic DNA markers, Nucleic Acids Res., 1989, 17: 6463–6471.

    Google Scholar 

  16. Akagi, H., Yokozeki, Y., Inagaki, A. et al., Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these micarosatellite loci, Theor. Appl. Genet., 1997, 94: 61–67.

    Article  Google Scholar 

  17. McCouch, S. R., Chen, X. L., Panaud, O. et al., Microsatellite marker development, mapping and applications in rice genetics and breeding, Plant Mol. Biol., 1997, 89(35): 89–99.

    Google Scholar 

  18. Svetlana, T., Genevieve, D. C., Angelika, L. et al., Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential, Genome Res., 2001, 11: 1441–1452.

    Google Scholar 

  19. Liu, X. C., Wu, J. L., SSR heterogenic patterns of parents for marking and predicting heterosis in rice breeding, Mol. Breed., 1998, 4: 263–268.

    Article  Google Scholar 

  20. Li, Z. C., Zhang, H. L., Cao, Y. S. et al., Studies on the sampling strategy for primary core collection of Chinese ingenious rice, Acta Agronomica Sinica (in Chinese), 2003, 29: 20–24.

    Google Scholar 

  21. IRRI-IBPGR, Descriptors for Rice (Oryza sativa L.), Manila: IRRI, 1980, 2–16.

    Google Scholar 

  22. Saghi Maroof, M. A., Soliman, K. M., Jorgensen, A. R. et al., Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics, Proc. Natl. Acad. Sci. USA, 1984, 81: 8014–8018.

    Google Scholar 

  23. Panaud, O., Chen, X. L., McCouch, S. R., Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.), Mol. Gen. Genet., 1996, 252: 597–607.

    Google Scholar 

  24. Nei, M., Analysis of gene diversity in subdivided populations, Proc. Natl. Acad. Sci. USA, 1987, 70(12): 3321–3323.

    Google Scholar 

  25. Shannon, C. E., A mathematical theory of communication, Bell Syst. Technol., 1948, 27: 379–423.

    Google Scholar 

  26. Xiong, Z. M., Cai, H. F., Rice in China (in Chinese), Shanghai: China Agricultural Technology Press, 1999, 50–200.

    Google Scholar 

  27. Yang, G. P., Saghai Maroof, M. A., Zhang, Q. F. et al., Genetic diversity of rice detected by a multiple copy microsatellite DNA marker, Heriditas (in Chinese), 1998, 20(2): 27–30.

    Google Scholar 

  28. Sun, X. L., Cai, H. W., Wang, X. K., Diversity and nonrandom association of rice isozyme gene, Acta Genetica Sinica (in Chinese), 1996, 23: 276–285.

    Google Scholar 

  29. Tang, S. X., Jiang, Y. Z., Wei, X. H. et al., Genetic diversity of isozymes of cultivated rice in China, Acta Agronomica Sinica (in Chinese), 2002, 28: 203–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zichao.

About this article

Cite this article

Qi, Y., Zhang, D., Zhang, H. et al. Genetic diversity of rice cultivars (Oryza sativa L.) in China and the temporal trends in recent fifty years. CHINESE SCI BULL 51, 681–688 (2006). https://doi.org/10.1007/s11434-006-0681-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-0681-8

Keywords

Navigation