Skip to main content

Genetic Engineering for Insect Resistance in Economically Important Vegetable Crops

  • Chapter
  • First Online:
Plant Tissue Culture: Propagation, Conservation and Crop Improvement

Abstract

Vegetables play a vital role in human nutrition and health by providing nutrients, vitamins, antioxidants, phytosterols, and dietary fiber. In the developing world, vegetable farming is a considerable part of the agricultural economy of different nations. Vegetable crop quality and quantity are seriously affected by various biotic and abiotic stresses, which destabilize rural economies in many countries. In the last many decades, conventional breeding has contributed significantly for the improvement of vegetable quality, yields, biotic and abiotic stress resistance, and postharvest management, but there are many constraints in conventional breeding, which can only be overcome by techniques of modern biology for genetic advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-wahhab MA, Aly SE (2003) Antioxidants and radical scavenging properties of vegetable extracts in rats fed aflatoxin-contaminated diet. J Agric Food Chem 51:2409–2414

    Article  CAS  PubMed  Google Scholar 

  • Acciarri N, Vitelli G, Arpaia S, Mennella G, Sunseri F, Rotino GL (2000) Transgenic resistance to the Colorado potato beetle in Bt-expressing eggplant fields. Hortscience 35(4):722–725

    Google Scholar 

  • Aggarwal S, Rao AV (2000) Tomato lycopene and its role in human health and chronic diseases. Can Med Assoc J 163(6):234–241

    Google Scholar 

  • Ahmad MZ, Hussain I, Muhammad A, Ali S, Ali GM, Roomi Z, Zia MA, Ijaz A (2012) Factor affecting Agrobacterium-mediated transformation of rice chitinase gene in Solanum tuberosum L. Afr J Biotechnol 11(41):9716–9723

    CAS  Google Scholar 

  • Alemayehu TN, Hans JJ, Fathi H (2012) Development of insect resistant transgenic pea (Pisum sativum L.): molecular and functional characterization of putative transgenic pea plants. Sect Plant Biotechnol 2:19–21

    Google Scholar 

  • Arpaia S, Mennella G, Onofaro V, Perri E, Sunseri F, Rotino GL (1997) Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor Appl Genet 95:329–334

    Article  CAS  Google Scholar 

  • Ashokan R (1999) Method of delivering Bacillus thuringiensis berliner insecticidal crystal toxins for the management of diamond back moth on cabbage. Insect Environ 4:124

    Google Scholar 

  • Awasthi M (2003) Agrobacterium- mediated insect resistance gene (cry1Ab) transfer studies in cauliflower (Brassica oleracea L. var. botrytis). Ph. D. thesis, Dr Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India

    Google Scholar 

  • Awasthi M, Srivastava DK (2013) Pyramiding of Bt-genes (cry1Ab and cry1Aa) in cauliflower (Brassica oleracea L. var. botrytis) for insect resistance using an Agrobacterium -mediated gene transfer technique. In: Proceedings of national symposium on plant tissue culture and biotechnology for food and nutritional security, Abstract, p. 72

    Google Scholar 

  • Bai YY, Mao HZ, Cao XL, Tang T, Wu D, Chen DD, Li WG, Fu WJ, You CB, Ding Y (1992) Transgenic cabbage plants with insect tolerance. Curr Plant Sci Biotechnol Agric 15:156–159

    Article  Google Scholar 

  • Bardhan SK, Sharma C, Srivastava DK (2013) Genetic transformation studies in agronomical important plant Solanum melongena L. through different seedling explants. Crop Improv 40(2):156–162

    Google Scholar 

  • Barton K, Whitley H, Yang NS (1987) Bacillus thuringiensis d- endotoxin in transgenic Nicotiana tabacum provide resistance to lepidopteran insects. Plant Physiol 85:1103–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  CAS  PubMed  Google Scholar 

  • Bhalla PL, Weered ND (1999) In vitro propagation of cauliflower, Brassica oleracea var. botrytis for seed production. Plant Cell Tiss Org Cult 56:89–95

    Article  CAS  Google Scholar 

  • Bhattacharya RC, Viswakarma, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistance transgenic cabbage plants expressing a synthetic cry IA(b) gene from Bacillus thuringiensis. Curr Sci 83(2):146–150

    CAS  Google Scholar 

  • Bosland PW, Bailey AL, Iglesias OJ (1988) Capsicum pepper varieties and classification. New Mexico State Univ. Ext. Cir. 530

    Google Scholar 

  • Bottrell DG, Aguda RM, Gould FL, Theunis W, Demayo CG, Magalit VF (1992) Potential strategies for prolonging the usefulness of Bacillus thuringiensis in engineered rice. Korean J Appl Entomol I31:247–255

    Google Scholar 

  • Boulter D, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA (1990) Additive protective effects of incorporating two different higher plant derived insect resistance genes in transgenic tobacco plants. Crop Prot 9:351–354

    Article  Google Scholar 

  • Burgess EPJ, Gatehouse AMR (1997) Engineering for insect pest resistance. In: McKersie BD, Brown DCW (eds) Biotechnology and the improvement of forage legumes. CAB International, New York, pp 229–258

    Google Scholar 

  • Burgess EPJ, Malone LA, Christeller JT (1996) Effects of two proteinase inhibitors on the digestive enzymes and survival of honeybees (Apis mellifera). J Insect Physiol 42:823–828

    Article  CAS  Google Scholar 

  • Cao J, Earle ED (2003) Transgene expression in broccoli (Brassica oleracea var. italica) clones propagated in vitro via leaf explants. Plant Cell Rep 21:789–796

    CAS  PubMed  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5(2):131–141

    Google Scholar 

  • Cao J, Brants A, Earle ED (2003) Cauliflower plants expressing a cry1C transgene control larvae of diamondback moths resistant or susceptible to Cry1A, and cabbage loopers. J New Seeds 5(3):193–207

    Google Scholar 

  • Cardoza V, Stewart CN Jr (2004) Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol-Plant 40:542–551

    Article  CAS  Google Scholar 

  • Chakrabarty R, Viswakarma N, Bhat SR, Kirti PB, Singh BD, Chopra VL (2002) Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. J Biosci 27:495–502

    Article  CAS  PubMed  Google Scholar 

  • Chang YM, Liou PC, Hsiao CH (1996) Anther culture of cabbage (Brassica oleracea L. var. capitata) and broccoli (B. oleracea L. var. italica) developmental stages and cultural medium relation with regeneration. J Agric Res China 45(1):35–46

    Google Scholar 

  • Charity JA, Anderson MA, Bittisnich DJ, Whitecross M, Higgins TJV (1999) Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance. Mol Breed 5(4):357–365

    Article  CAS  Google Scholar 

  • Chatterjee SS (1986) Cole crops. In: Bose TK, Som MG, Abir J (eds) Vegetable crops in India. Naya Prokash, Calcutta, pp 165–247

    Google Scholar 

  • Chaudhary B (1996) Vegetables, 9th edn. National Book Trust of India, New Delhi, 230p

    Google Scholar 

  • Chen LP, Zhang MF, Xiao QB, Wu JG, Hirata Y (2004) Plant regeneration from hypocotyl protoplasts of red cabbage (Brassica oleracea) by using nurse cultures. Plant Cell Tiss Org Cult 77(2):133–138

    Google Scholar 

  • Chen LO, Chin HL, Kelkarc SM, Chang YM, Shawa JF (2007) Transgenic broccoli (Brassica oleracea L. var. italica) with antisense chlorophyllase (BOCLH1) delays post harvest yellowing. Plant Sci 174(1):25–31

    Google Scholar 

  • Cherian SK, Prutki IS, Tandon GL (1995) Recent advances in the canning of processed peas. Indian Food Packing 9(3):25–30

    Google Scholar 

  • Chikkala VRN, Nugent GD, Dix PJ, Stevenson TW (2009) Regeneration from leaf explants and protoplasts of Brassica oleracea L. var. botrytis (cauliflower). Sci Hortic 119:330–334

    Article  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Saiky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Plant Cell 11:263–271

    CAS  Google Scholar 

  • Cho HS, Lee YH, Suh SC, Kin DH, Kin HI (1994) Transformation of gus gene into Chinese cabbage (Brassica campestris var. pekinensis) by particle bombardment. J Agric Sci Technol 36(2):181–186

    Google Scholar 

  • Christeller JT, Shaw BD (1989) The interaction of a range of serine proteinase inhibitors with bovine trypsin and Costelytra zealandica trypsin. Insect Biochem 19:233–241

    Article  CAS  Google Scholar 

  • Christeller JT, Laing WA, Markwick NP, Burgess EPJ (1992) Midgut protease activities in 12 phytophagus lepidopteran larvae: dietary and protease inhibitor interactions. Insect Biochem Mol 22:735–746

    Article  CAS  Google Scholar 

  • Christey MC, Earle ED (1991) Regeneration of Brassica oleracea from peduncle explants. Hortic Sci 26:1069–1072

    Google Scholar 

  • Crickmore N, Zeigler DR, Feitelson J, Schnepf E, van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czalpa TH, Lang BA (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and Southern corn rootworm (Coleoptera: Chrysomelidae). J Econ Entomol 83:2480–2485

    Article  Google Scholar 

  • Day AG, Lichtenstein CP (1992) Plant genetic transformation by Agrobacterium tumefaciens. In: Fowler MW, Warren GS (eds) Plant biotechnology. Pregman Press, Oxford, pp 151–182

    Chapter  Google Scholar 

  • DeBlock M, Herrera-Estrella L, Van-Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. Eur Mol Biol Organ J 3:1681–1689

    CAS  Google Scholar 

  • Decoteau DR (2000) Vegetable crops. Prentice Hall, Upper Saddle River, pp 206–213

    Google Scholar 

  • Delannay X, Lavallee BJ, Proksch RK, Fuchs RL, Sims SR, Greeplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischhoff DA (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Biotechnology 7:1265–1269

    Google Scholar 

  • Deng-Xia Y, Lei C, Yu-Mei L, Mu Z, Yang-Yong Z, Zhi-Yuan F, Li-Mei Y (2011) Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt cry1Ba3 gene for control of diamondback moth. Agric Sci China 10(11):1693–1700

    Article  CAS  Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998a) Development of insect resistance transgenic cauliflower plants expressing trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    Article  CAS  Google Scholar 

  • Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998b) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77–84

    Article  CAS  PubMed  Google Scholar 

  • Douches DS, Westedt AL, Zarka K, Schroeter B, Grafius EJ (1998) Transformation of cryV-Bt transgene combined with natural resistance mechanisms for resistance to tuber moth in potato (Solanum tuberosum L.). HortScience 33:1053–1056

    CAS  Google Scholar 

  • Dowd PF, Lagrimini LM (1997) Examination of different tobacco types under- and overexpressing tobacco anionic peroxidase for leaf resistance to com earworms. J Chem Ecol 23:2357–2370

    Article  CAS  Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    Article  CAS  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51:487–496

    Article  CAS  PubMed  Google Scholar 

  • Eimert K, Siegemund F (1992) Transformation of cauliflower (Brassica oleracea L. var. botrytis) – an experimental survey. Plant Mol Biol 19(3):485–490

    Article  CAS  PubMed  Google Scholar 

  • Eisemann CH, Donaldson RA, Pearson RD, Cadagon LC, Vuocolo T, Tellam RL (1994) Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomol Exp Appl 72:1–11

    Article  CAS  Google Scholar 

  • Estrada MA, Zarka K, Cooper S, Coombs J, Douches DS, Grafius E (2007) Potato tuberworm (Lepidoptera: Gelechiidae) resistance in potato lines with the Bacillus thuringiensis cry1Ac gene and natural resistance factors. HortScience 42:1306–1311

    CAS  Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 99:10367–10372

    Article  Google Scholar 

  • FAOSTAT data, 2012–2013. http://faostat.fao.org/site

  • Farzinebrahimi R, Taha RM, Fadainasab M, Mokhtar S (2012) In vitro plant regeneration, antioxidant and antibacterial studies on broccoli, Brassica oleracea var. italica. Pak J Bot 44(6):2117–2122

    Google Scholar 

  • Finley JW (2003) Reduction of cancer risk by consumption of selenium-enriched plants: enrichment of broccoli with selenium increases the anticarcinogenic properties of broccoli. J Med Food 6:19–26

    Article  CAS  PubMed  Google Scholar 

  • Finley JW, Ip C, Lisk DJ, Davis CD, Hintze KG, Whanger PD (2001) Cancer-protective properties of high-selenium broccoli. J Agric Food Chem 49:2679–2683

    Article  CAS  PubMed  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marsona PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT, Kretzmer I, Kusano K (1987) Insect tolerant transgenic tomato plants. Biotechnology 5(8):807–817

    Article  CAS  Google Scholar 

  • Food and Agricultural Organization. http://faostat.fao.org/site/339/default.aspx

  • Fraley RT, Rogers SG, Horsch RB, Sanders PS, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffman NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fromm M, Armstrong C, Blasingame A, Brown S, Duncan D, Deboer D, Hairston B, Howe A, McCaul S, Neher M, Pajeau M, Parker G, Pershing J, Petersen B, Santino C, Sanders P, Sato S, Sims S, Thorton T (1994) Production of insect resistant corn. J Biol Chem Suppl 18A:77

    Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K (1993) Insect resistant rice generated by introduction of a modified a-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Gambhir G (2014) Studies on Agrobacterium-mediated insect resistance gene transfer in cabbage (Brassica oleracea L. var. capitata) and molecular analysis of regenerated plantlets. Ph. D. thesis, Dr Y. S. Parmar University of Horticulture and Forestry, Nauni. Solan

    Google Scholar 

  • Garcia D, Narváez-Vásquez J, Orozco-Cárdenas ML (2015) Tomato (Solanum lycopersicum). Methods Mol Biol 1223:349–361

    Article  CAS  PubMed  Google Scholar 

  • Gasser CS, Fraley RT (1989) Genetically engineered plants for crop improvement. Science 244:1293–1299

    Article  CAS  PubMed  Google Scholar 

  • Gatehouse LN (1995) Novel genes for insect resistance in transgenic plants. Ph.D thesis, Durham University UK

    Google Scholar 

  • Gatehouse AMR, Gatehous JA, Boulter D (1980) Isolation and characterization of trypsin inhibitors from cowpea (Vigna unguiculata). Phytochemistry 19:751–756

    Article  CAS  Google Scholar 

  • Gatehouse AMR, Fenton KA, Jepson I, Pavey DJ (1986) The effects of α-amylase inhibitors on insect storage pests: inhibition of α-amylase in vitro effects on development in vitro. J Sci Food Agric 35:373–380

    Article  Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Rahbe Y, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid Myzus persicae. Entomol Exp Appl 79:295–307

    Article  Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Merryweather A, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    Article  CAS  Google Scholar 

  • Gaur (2015) Studies on Agrobacterium-mediated insect resistance gene [cry1A(a)] transfer in cauliflower (Brassica oleracea L. var. botrytis). Ph.D. thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP)

    Google Scholar 

  • Gould F, Walter P, Jeanne RL (1984) Polistes wasps (Hymenoptera: Vespidae) as control agents for lepidopterous cabbage pests. Environ Entomol 13:150–156

    Article  Google Scholar 

  • Greenleaf WH (1986) Pepper breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, pp 67–134

    Google Scholar 

  • Griga M, Horacek J, Svabova L, Hanacek P, Reinohl V, Sehnal F (2009) Development of transgenic pea (Pisum sativum L.) for improved tolerance to insect pests and fungal pathogens. White book genetically modified crops. pp 1–96

    Google Scholar 

  • Hama H (1992) Insecticide resistance characteristics of diamondback moth. In: Talekar NS (ed.) Diamondback moth and other crucifer pests: proceeding of the second international workshop. Asian Vegetable Research Development Centre (AVRDC). pp 455–464

    Google Scholar 

  • Hamilton GC, Jelenkovic GL, Lashomb JH, Ghidiu G, Billings S, Patt JM (1997) Effectiveness of transgenic eggplant (Solanum melongena L.) against the Colorado potato beetle. Adv Hortic Sci 11:189–192

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van-Montagu M, Schell J (1983) Expression of chimeric genes transferred into plant cell using a Ti-plasmid vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Higgins JD, Newbury HJ, Barbara DJ, Muthumeenakshi S, Puddephat IJ (2006) Production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidase 1 and 2 to extend shelf life. Mol Breed 17(1):7–20

    Article  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330:160–163

    Article  CAS  Google Scholar 

  • Höfte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  PubMed Central  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Llyod A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  CAS  PubMed  Google Scholar 

  • Houseman JG, Downe AER, Philogene BJR (1989) Partial characterization of proteinase activity in the larval mid gut of European corn borer Ostrinia nubilalis Hubner (Lepidoptera: Pyralidae). Can J Zool 67:864–868

    Article  CAS  Google Scholar 

  • Hua HZ, Qing CJ, Ting WG, Wei J, Xiu LC, Zhi HR, Lin WF, Hong LZ, Yun CX (2005) Highly efficient transformation and plant regeneration of tall fescue mediated by Agrobacterium tumefaciens. J Plant Physiol Mol Biol 31(2):149–159

    Google Scholar 

  • Hua WF, Chen CH, Yuan LG, Min WL (2009) Transformation of cabbage (Brassica oleracea L.) using activation tagging plasmid. Acta Bot Boreali-Occidentalia Sin 29(5):905–909

    Google Scholar 

  • Huang Ke, Jiashu Cao, Xiaolin Yu, Wanzhi Ye, Gang Lu and Xiang Xun (2005) Plant male sterility induced by antigeneCYP86MF in Brassica oleracea L. var. italica. Agric Sci China 4(11):806–810

    Google Scholar 

  • Huang Ke, Qiuyun Wu, Juncleng Lin and Zheng J (2011) Optimization of plant regeneration from broccoli. Afr J Biotechnol 10(20):4081–4085

    Google Scholar 

  • Husaini AM (2010) Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29:97–110

    Article  CAS  PubMed  Google Scholar 

  • Huxley AJ, Griffiths M, Levy M (1992) New royal horticulture society. Dictionary of gardening, vol 4. Macmillan, London

    Google Scholar 

  • Iannacone R, Grieco PD, Cellini F (1997) Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol 34:485–496

    Article  CAS  PubMed  Google Scholar 

  • Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31(3):339–345

    Article  CAS  PubMed  Google Scholar 

  • Jain SM (1993) Recent advances in plant genetic engineering. Curr Sci 64:714–724

    Google Scholar 

  • Jansens S, Cornelissen M, DeClercq R, Reynaerts A, Peferoen M (1995) Phthorimaea operculella (Lepidoptera: Gelechiidae) resistance in potato by expression of the Bacillus thuringiensis cry1A(b) insecticidal crystal protein. J Econ Entomol 88:1469–1476

    Article  Google Scholar 

  • Jelenkovic G, Billings S, Chen Q, Lashomb J, Noda Y, Kneyuki T, Igarashi K, Mori A, Packer L (2000) Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148:119–123

    Article  Google Scholar 

  • Jin RG, Lin YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium mediated transformation. In Vitro Cell Dev Biol Plant 36:231–237

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci U S A 86:9871–9875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun C, Tang Juliet D, Nicolai S, Shelton Anthony M, EarleElizabeth D (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5(2):131–141

    Article  Google Scholar 

  • Kaur ND, Vyvadilova M, Klima M, Bechyne M (2006) A simple procedure for mesophyll protoplast culture and plant regeneration in Brassica oleracea L. and Brassica napus L. Czech J Genet Plant Breed 3:103–110

    Google Scholar 

  • Keck AS, Qiao Q, Jeffery EH (2003) Food matrix effects on bioactivity of broccoli-derived sulforaphane in liver and colon of f344 rats. J Agric Food Chem 51:3320–3327

    Article  CAS  PubMed  Google Scholar 

  • Khan R (1979) Solanum melongena and its ancestral forms. In: Hawkes J, Lester R, Skelding A (eds) The biology and taxonomy of the Solanaceae. Published for the Linnean Society of London by Academic Press, London, pp. 629–636

    Google Scholar 

  • Kim JH, Botella JR (2002) Callus induction and plant regeneration from broccoli (Brassica oleracea var. italica) for transformation. J Plant Biol 45(3):177–181

    Article  Google Scholar 

  • Kim SJ, Lee SJ, Kim BD, Paek KH (1997) Satellite RNA mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep 16:825–830

    Article  CAS  Google Scholar 

  • Kumar P (2016) Studies on Agrobacterium-mediated insect resistance gene [cry1A(a)] transfer in broccoli (Brassica oleracea L. var. italica) and molecular analysis of regenerated transgenic plantlets. Ph.D. thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP)

    Google Scholar 

  • Kumar H, Kumar V (2004) Tomato expressing cryIA(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and field. Crop Prot 23:135–139

    Article  CAS  Google Scholar 

  • Kumar P, Srivastava DK (2015a) Effect of potent cytokinin thidiazuron (TDZ) on in vitro morphogenic potential of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Indian J Plant Physiol. doi:10.1007/s40502-015-0179-y

    Google Scholar 

  • Kumar P, Srivastava DK (2015b) High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Physiol Mol Biol Plants 21(2):279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop: a review. Biotechnol Lett. doi:10.1007/s10529-016-2080-9

    PubMed Central  Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4(1):33–37

    Article  CAS  Google Scholar 

  • Kumar P, Gambhir G, Gaur A, Srivastava DK (2015a) Molecular analysis of genetic stability in tissue culture raised plants of broccoli (Brassica oleracea L. var. italica). Curr Sci 109(8):1470–1475

    Google Scholar 

  • Kumar P, Gaur A, Srivastava DK (2015b) Morphogenic response of leaf and petiole explants of broccoli using thidiazuron. J Crop Improv 29:432–446

    Article  CAS  Google Scholar 

  • Lecardonnel A, Chauvin L, Jouanin L, Beaujean A, Prevost G, Sangwan-Norreel B (1999) Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci 140:71–79

    Article  CAS  Google Scholar 

  • Lei JJ, Yang WJ, Yuan SH Ying FY, Diong LC (2006) Study on transformation of cysteine proteinase inhibitor gene into cabbage (Brassica oleracea var. capitata L.). In: International symposium on Brassica and XIV crucifer genetic workshop, Acta Horticult

    Google Scholar 

  • Lei C, Mei YL, Nan Z, Mei LY, Mu Z, Yong ZY, Jun ZY, Fang HD, Yuan FZ (2009) Transformation and expressing of Bt gene cry1Ia8 in cabbage. Acta Horticult Sin 36(8):1161–1168

    Google Scholar 

  • Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to root knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5(4):455–464

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Brookhart G, Feng GH, Reeck GR, Kramer KJ (1991) Inhibition of digestive proteinases of stored grain coleoptera by oryzacystatin, a cysteine proteinase inhibitor from rice seed. FEBS Lett 278(2):139–142

    Article  CAS  PubMed  Google Scholar 

  • Liang XY, Mi JJ, Zhu YX, Chen Z (1994) Construction of plant expression vector with double resistance to virus and insect and identification of transformation in tomato. Acta Bot Sin 36(11):849–854

    CAS  Google Scholar 

  • Lindsey K (1992) Genetic manipulations of crop plants. J Biotechnol 26:1–28

    Article  CAS  Google Scholar 

  • Lingling L, Jianjun L, Ming S, Liyun L, Bihao C (2005) Study on transformation of cowpea trypsin inhibitor gene into cauliflower (Brassica oleracea L. var. botrytis). Afr J Biotechnol 4(1):45–49

    Google Scholar 

  • Liu CW, Lin CC, Yiu JC, Chen JJW, Tseng MJ (2008) Expression of a Bacillus thuringiensis toxin (cry IAb) gene in cabbage (Brassica oleracea var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117:75–88

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. doi:10.1038/ncomms4930

    Google Scholar 

  • Majer S MJ et al (2007) Bean alpha amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1421

    Google Scholar 

  • Mandaokar AD, Goyal RK, Shukla A, Bisaria S, Bhalla R, Reddy VS, Chaurasia A, Sharma RP, Ananda PK (2000) Transgenic tomato plants resistant to fruit borer (Helicoverpa armigera Hubner). Crop Prot 19:307–312

    Article  CAS  Google Scholar 

  • Marchetti S, Chiaba C, Chiesa F, Bandiera A, Pitotti A (1998) Isolation and partial characterisation of two trypsins from the larval midgut of Spodoptera littoralis (Boisduval). Insect Biochem Mol 28:449–458

    Article  CAS  Google Scholar 

  • Marchetti S, Delledonne M, Fogher C, Chiabà C, Chiesa F, Savazzini F, Giordano A (2000) Soybean Kunitz, C-II and PI-IV inhibitor genes confer different levels of insect resistance to tobacco and potato transgenic plants. Theor Appl Genet 101:519–526

    Article  CAS  Google Scholar 

  • McGarvey PB, Montasser MS, Kaper JM (1994) Transgenic tomato plants expressing satellite RNA are tolerant to some strains of cucumber mosaic virus. J Am Soc Hortic Sci 119:642–647

    CAS  Google Scholar 

  • McPherson RM, MacRae TC (2009) Evaluation of transgenic soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene for suppressing lepidopteran population densities and crop injury. J Econ Entomol 102(4):1640–1648

    Article  CAS  PubMed  Google Scholar 

  • Mennella G, Acciarrib N, D’Alessandroa A, Perronea D, Arpaiac S, Sunserid F, Rotino GL (2005) Mixed deployment of Bt-expressing eggplant hybrids as a reliable method to manage resistance to Colorado potato beetle. Sci Hortic 104:127–135

    Article  Google Scholar 

  • Metz TD, Dixit TR, Earle ED (1995a) Agrobacterium tumefaciens mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep 15:287–292

    CAS  PubMed  Google Scholar 

  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle ED (1995b) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 4:309–317

    Article  Google Scholar 

  • Moellenbeck DJ, Peters ML, Bing JW, Rouse JR, Higgins LS, Sims L, Nevshemal T, Marshall L, Ellis RT, BystrakPG LBA, Stewart JL, Kouba K, Sondag V, Gustafson V, Nour K, Xu D, Swenson J, Zhang J, Czapla T, Schwab G, Jayne S, Stockhoff BA, Narva K, Schnepf HE, Stelman SJ, Poutre C, Koziel M, Duck N (2001) Insecticidal proteins from Bacillus thuringiensis protect corn from corn rootworms. Nat Biotechnol 19:668–672

    Article  CAS  PubMed  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97(8):3820–3825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naimov S, Dukiandjiev S, Maagad RA (2003) A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and lepidopteran pest in transgenic potato. Plant Biotechnol J 1:51–57

    Article  CAS  PubMed  Google Scholar 

  • Narendran M, Seema A, Prakash G, Dattatray S, Ghulam M, Ratnapal G, Srinivas K, Char BR, Zehr UB (2007) Production of marker free insect resistant transgenic brinjal (Solanum melongena L.) carrying cry2Ab gene. Acta Horticult 752:535–538

    Article  CAS  Google Scholar 

  • National Horticulture Board (NHB) 2014–2014. http://www.nhb.org.in

  • Odu NN, Okomuda MO (2013) Prevalence of Salmonella species and Escherichia coli in fresh cabbage and lettuce sold in Port Harcourt Metropolis, Nigeria. Rep Opin 5(3):1–8

    Google Scholar 

  • Pal JK, Singh M, Rai M, Satpathy S, Singh DV, Kumar S (2009) Development and bioassay of cry1Ac-transgenic eggplant (Solanum melongena L.) resistant to shoot and fruit borer. J Hortic Sci Biotechnol 84(4):434–438

    Article  CAS  Google Scholar 

  • Passelegue E, Kerlan C (1996) Transformation of cauliflower (Brassica oleracea var. botrytis) by transfer of cauliflower by mosaic gene through cocultivation with virulent and avirulent stains of Agrobacterium. Plant Sci 113:79–89

    Article  CAS  Google Scholar 

  • Paul A, Sharma SR, Sresty TVS, Devi S, Bala S, Kumar PS, Pardha SP, Frutos R, Altosaar I, Kumar PA (2005) Transgenic cabbage (Brassica oleracea var. capitata) resistant to diamondback moth (Plutella xylostella). Indian J Biotechnol 4:72–77

    CAS  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Peterson LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetle. Plant Mol Biol 22(2):313

    Article  CAS  PubMed  Google Scholar 

  • Phap PD, Xuan HT, Sudhakar D, Balasubramanian P (2010) Engineering resistance in brinjal against nematode (Meloidogyne incognita) using cry1Abgene from Bacillus thuringiensis Berliner, In: Proceedings of the 3rd international conference on the development of BME in Vietnam, pp 286–289

    Google Scholar 

  • Pownall TL, Udenigwe CC, Aluko RE (2010) Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem 58:4712–4718

    Article  CAS  PubMed  Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2(3):185–210

    Article  Google Scholar 

  • Puddephat IJ, Robinson HT, Fenning TM, Barbara DJ, Morton A, Pink DAC (2001) Recovery of phenotypically normal transgenic plants of Brassica oleracea L. var. italica upon Agrobacterium rhizogenes-mediated co-transformation and selection of transformed hairy roots by GUS assay. Mol Breed 7(3):229–242

    Article  CAS  Google Scholar 

  • Qaim M, Zilberman D (2003) Yield effects of genetically modified crops in developing countries. Science 299:900–902

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Li HL, Guo YD (2006) High frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Sci Hortic 111:203–208

    Article  CAS  Google Scholar 

  • Rai NP, Govind KR, Sanjeev K, Nishi K, Major S (2013) Shoot and fruit borer resistant transgenic eggplant (Solanum melongena L.) expressing cry1Aa3 gene: development and bioassay. Crop Prot 53:37–45

    Article  CAS  Google Scholar 

  • Ranjekar PK, Patnakar A, Gupta V, Bhatnagar R, Bentur J, Kumar PA (2003) Genetic engineering of crop plants for insect resistance. Curr Sci 84(3):412–422

    Google Scholar 

  • Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Sirchi MHT (2009) Plant regeneration of Brassica oleracea var. italica (broccoli) cv. Green marvel was affected by plant growth regulators. Afr J Biotechnol 8(11):2523–2528

    CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Kadir MA, Rashid AA, Haddadi (2011) In vitro shoot regeneration and acclimatization of Brassica oleracea var. italica cv. Green marvel. Afr J Biotechnol 10(29):5614–5619

    CAS  Google Scholar 

  • Rhim SL, Cho HJ, Kim BD (1995) Development of insect resistance in tomato plants expressing the delta-endotoxin gene of Bacillus thuringiensis sub sp. tenebrionis. Mol Breed 1(3):229–236

    Article  CAS  Google Scholar 

  • Ravanfar SA, Aziz MA, Rashid AA, Shahida S (2014) In vitro adventitious shoot regeneration from cotyledon explant of Brassica oleracea subsp. italica and Brassica oleracia subsp. capitata using TDZ and NAA. Pak J Bot 46(1):329–335

    Google Scholar 

  • Robertson D, Earle ED (1986) Plant regeneration from leaf protoplasts of Brassica oleracea L. var. italica. Plant Cell Rep 5(1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Ryder EJ (1986) Lettuce breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI Publishing, Westport, pp 433–474

    Google Scholar 

  • Ryder EJ (1999) Lettuce. Endive and chicory. CABI Publishing, Wallingford, 208p

    Google Scholar 

  • Schnepf HE, Whitley HR (1981) Cloning and expression of Bacillus thuringiensis crystal protein gene in E. coli. Proc Natl Acad Sci USA 78:2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995) Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum). Plant Physiol 107:1233–1239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selvanarayanan V, Narayanasamy P (2006) Factors of resistance in tomato accessions against the fruit worm, Helicoverpa armigera (Hubner). Crop Prot 25:1075–1079

    Article  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic Pea-seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio-Technology 12(8):793–796

    Article  CAS  Google Scholar 

  • Sharma S (2013) Plant regeneration and genetic transformation studies in pea (Pisum sativum L.). M.Sc. thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP)

    Google Scholar 

  • Sharma P (2014) Plant regeneration and genetic transformation studies in lettuce (Lactuca sativa L.). M.Sc. thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP)

    Google Scholar 

  • Sharma C, Srivastava DK (2013) Efficient Agrobacterium – mediated genetic transformation of tomato using petiole explant. Crop Improv 40(1):44–49

    Google Scholar 

  • Sharma P, Srivastava DK (2014) In vitro plant regeneration from cotyledon and hypocotyls tissues of tomato (Solanum lycopersicum L. cv. Solan Vajr). Vegetos 27(3):151–160

    Google Scholar 

  • Shelton AM, Andalora JT, Barnards J (1982) Effects of cabbage looper, imported cabbageworm, and diamondback moth on fresh market and processing cabbage. J Econ Entomol 75:742–745

    Article  Google Scholar 

  • Shelton AM, Wyman JA, Cushing NL, Apfelbeck K, Dennehy TJ, Mahr SER, Eigenbrode SD (1993) Insecticide resistance of diamondback moth (Lepidoptera: Plutellidae) in North America. J Econ Entomol 86:11–19

    Article  CAS  Google Scholar 

  • Shi Y, Wang MB, Powell KS, Van Damme E, Hilder VA, Gatehouse AMR, Boulter D, Gatehouse JA (1994) Use of the rice sucrose synthase-1 promoter to direct phloem-specific expression of b-glucuronidase and snowdrop lectin genes in transgenic plants. J Exp Bot 45:623–631

    Article  CAS  Google Scholar 

  • Silva ME, Santos RC, O’Leary MC, Santos RS (1999) Effect of aubergine (Solanum melongena) on serum and hepatic cholesterol and triglycerides in rats. Braz Arch Biol Technol 42(3):339–342

    Google Scholar 

  • Singh SP (1997) Principles of vegetable production. Agrotech Publishing Academy, Udaipur, 288p

    Google Scholar 

  • Singh Z, Sansavini S (1998) Genetic transformation and fruit crop improvement. Plant Breed Rev 16:87–134

    Google Scholar 

  • Siong PK, Taha RM, Rehiman FA (2011) Somatic embryogenesis and plant regeneration from hypocotyls and leaf explants of Brassica oleracea var. botrytis (cauliflower). Acta Biol Cracov 53:26–31

    Google Scholar 

  • Srivastava DK (1998) Biotechnology in the development of vegetable crops resistant to insect pests. In: Kohli UK, Korla BN, Narayan R (eds) Advances in breeding and seed production of commercial vegetables. Centre of Advanced Studies Horticulture, Nauni, pp 183–186

    Google Scholar 

  • Srivastava DK (1997) Agrobacterium-mediated gene transfer in plants – a review. In: Pareek LK (ed) Trends in plant tissue culture and biotechnology. Agrobotanical Publication, India, pp 17–30

    Google Scholar 

  • Srivastava DK (2001) Plant genetic engineering and fruit crop improvement – future needs and strategies. In: Singh J, Sharma RP, Sharma VK (eds) Himalayan horticulture horti-vision 2020. Department of Horticulture, Govt. of H P, Shimla, pp 112–117

    Google Scholar 

  • Srivastava DK (2002) Plant genetic engineering in crop improvement. In: Arora JK, Marwaha SS, Grovers RK (eds) Biotechnology in agriculture and environment. Asiatech Publisher, India, pp 39–56

    Google Scholar 

  • Srivastava DK (2003) Genetic transformation and crop improvement. In: Arora JK, Marwaha SS, Grover RK (eds) Biotechnological strategies in agro-processing. Asiatech Publisher, New Delhi, pp 251–273

    Google Scholar 

  • Srivastava DK (2012a) Genetic improvement of plants using Agrobacterium-mediated gene transfer technique. In: Proceedings of national symposium on impact of plant tissue culture on advances in plant biology, pp 97–98

    Google Scholar 

  • Srivastava DK (2012b) Genetic engineering of crop plants for insect resistance. In: Proceedings of national seminar on plant cell, tissue and organ culture: emerging trends, pp 6–7

    Google Scholar 

  • Srivastava DK, Gambhir G, Sharma P (2013) Plant cell and tissue culture techniques in crop improvement. In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: opportunities and challenges. CRC Press, Taylor and Francis, New York, pp 73–131

    Chapter  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW (1991) Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 84:49–55

    Article  Google Scholar 

  • Theunissen J, Booij CJH, Lotz LAP (1995) Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomol Exp Appl 74:7–16

    Article  Google Scholar 

  • Thomas PE, Kaniewski WK, Lawson EC (1997) Reduced field spread of potato leafroll virus in potatoes transformed with the potato leafroll virus coat protein gene. Plant Dis 81:1447–1453

    Article  Google Scholar 

  • Tiwari S, Mishra AS, Singh A, Singh PK, Tuli R (2008) Expression of synthetic cry1EC gene for resistance against spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Vaeck M, Reynaeris A, Hofte H, Jansens S, DeBeukleer MD, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Vaeck M, Reynae A, Hufte H (1989) Protein engineering in plants: expression of Bacillus thuringiensis insecticidal protein genes. In: Schell J, Vasil IK (eds) Cell culture and somatic cell genetics of plants, vol 6. Academic, London, pp 425–439

    Google Scholar 

  • Vallejo FC, Garcia V, Tomas-barberan FA (2003) Changes in broccoli (Brassica oleracea var. italica) health-promoting compounds with inflorescence development. J Agric Food Chem 51:3776–3782

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh J (2006) Agrobacterium-mediated insect resistance gene (cry IAb) transfer studies in cabbage (Brassica oleracea L. var. capitata). M.Sc. thesis, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP)

    Google Scholar 

  • Verma S, Dhiman K, Srivastava DK (2013) Agrobacterium-mediated genetic transformation of bell pepper (Capsicum annuum L. cv. California Wonder) with gus and npt-II genes. Int J Adv Biotechnol Res 4(3):397–403

    CAS  Google Scholar 

  • Viswakarma N, Bhattacharya RC, Chakrabarty R, Dargan S, Bhat SR, Kirti PB, Shastri NV, Chopra VL (2004) Insect resistance of transgenic plants i.e. broccoli (‘Pusa Broccoli KTS-1’) expressing a synthetic cryIA(b) gene. J Hortic Sci Biotechnol 79(2):182–188

    Article  CAS  Google Scholar 

  • Wang H, Tsang E, McNel J, Hannam C, Brown DCM, Miki B (2003) Expression of cry IAc and gus in cabbage and cauliflower. Acta Horticult 625:457–464

    Article  CAS  Google Scholar 

  • Wang Z, Zhang K, Sun X, Tang K, Zhang J (2005) Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants. J Biosci 30(5):627–638

    Article  CAS  PubMed  Google Scholar 

  • Wolfson JL, Murdock LL (1987) Suppression of larvae of colorado potato beetle growth and development by digestive proteinase inhibitor. Entomol Exp Appl 44:235–240

    Article  CAS  Google Scholar 

  • Xing YJ, Ji Q, Yang Q, Luo YM, Li Q, Wang X (2008) Studies on Agrobacterium-mediated genetic transformation of embryogenic suspension cultures of sweet potato. Afr J Biotechnol 7(5):534–540

    CAS  Google Scholar 

  • Yazdanpanah F, Tohidfar M, Ashari ME, Ghareyazi B, Jashni MK, Mosavi M (2009) Enhanced insect resistance to bollworm (Helicoverpa armigera) in cotton containing a synthetic cryIAb gene. Indian J Biotechnol 8:72–77

    CAS  Google Scholar 

  • Yoshikawa K, Inagaki K, Terashita T, Shishiyama J, Shankel DM (1996) Desmutagenic effect of pheophytin from Japanese eggplant against several mutagens. J Food Hyg Soc Jpn 37(5):295–300

    Article  CAS  Google Scholar 

  • Zhang Y, Talalay P, Chlo CG, Posner GH (1992) Major inducer of anticarcinogenic protective enzyme from broccoli isolation and elucidation of structure. Proc Natl Acad Sci U S A 89:2399–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JJ, Liu F, Luo C, Yao L, Zhao H, Huang Y (2004) Genetic transformation of Chinese cabbage with a inducible potato pinII gene and the bioassay for Pieris rapae L. resistance. Acta Hortic Sin 31(2):193–198

    CAS  Google Scholar 

  • Zhang Y, Li H, Ouyang B, Lu Y, Ye Z (2006) Chemical induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liang A, Zhu Z, Tang Y (2006) Regeneration of Chinese cabbage transgenic plants expressing antibacterial peptide gene and cowpea trypsin inhibitor gene. Euphytica 150(3):397–406

    Article  CAS  Google Scholar 

  • Zhong ZX, Li X (1993) Plant regeneration from hypocotyl protoplasts culture of Brassica oleracea L. var. italica. Acta Agric Shanghai 9(4):13–18

    Google Scholar 

Download references

Acknowledgment

We are highly thankful to Dr. K. R. Koundal, Dr. P. Ananda Kumar (NRCPB, IARI, New Delhi), and Dr. D. P. S Verma, Plant Biotechnology Center, the Ohio State University, Columbus, USA, for providing Agrobacterium strain containing the cry1Aa and cry1Ab and nptII and gus gene(s), respectively, which were used in various vegetable crops, and their work which has been cited in this chapter. We are grateful to the professor and head of the Department of Vegetable Science Dr. Y.S. Parmar UHF Solan, Himachal Pradesh, India, for providing us the healthy certified seeds of economically important vegetable crops. We are also thankful to our students Dr. Monika Awasthi, Dr. Anil Kant, Dr. Nimisha Gupta, Dr. Chhaya Sharma, Dr. Sneh Sharma, Dr. Sonali Dixit, Dr. Shalini Sharma, Dr. Narender Singh, Dr. J Venkatesh, Dr. Swati Verma, Dr. Karuna Dhiman, Dr. Poornima Sharma, Ms. Sonia Kumari, Ms. Hemlata Verma, Ms. Pooja Sharma, and Ms. Ishani Shaunak for their research contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Srivastava, D.K., Kumar, P., Sharma, S., Gaur, A., Gambhir, G. (2016). Genetic Engineering for Insect Resistance in Economically Important Vegetable Crops. In: Anis, M., Ahmad, N. (eds) Plant Tissue Culture: Propagation, Conservation and Crop Improvement. Springer, Singapore. https://doi.org/10.1007/978-981-10-1917-3_15

Download citation

Publish with us

Policies and ethics