Skip to main content
Log in

Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Following previously described Agrobacterium tumefaciens-mediated transformation procedures for Fragaria × ananassa Duch. ‘Chandler’, we undertook several experiments to establish the importance of some parameters affecting transformation. The most important factor that increased the percent recovery of transformants was the introduction of a pre-selection phase, in-between co-cultivation and selection, in which leaf disks were cultured on pre-selection regeneration medium containing validamycin A, timentin, and cefotaxime. The average percentage of leaf disks forming shoots on selection medium containing cefotaxime (250 mg l−1) + timentin (250 mg l−1) was 5.4% and about three shoots per regenerating leaf disk. Maximum transformation percentage, based on polymerase chain reaction, was 31.25%. Transgene integration and copy number were assessed by Southern hybridization confirming single copy as well as multiple copies of transgene integration in shoots as well as roots separately. This confirmed the non-chimeric nature of these transgenic plants. The system is very promising for the regeneration of genetically transformed cells and obtaining transgenic strawberry plants at high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alsheikh MK, Suso HP, Robson M, Battey NH, Wetten A (2002) Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F.v. semperflorens. Plant Cell Rep 20:1173–1180

    Article  CAS  Google Scholar 

  • AOAC (1990) Official and tentative methods of analysis, 15th edn. Association of official Agricultural Chemists, Washington, DC, p 850

    Google Scholar 

  • Arquelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Article  Google Scholar 

  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149

    CAS  Google Scholar 

  • Bachelier C, Graham J, Machray G, Du Manoir J, Roucou JF, McNicol RJ, Davies H (1997) Integration of an invertase gene to control sucrose metabolism in strawberry cultivars. Acta Hortic 439:161–163

    CAS  Google Scholar 

  • Barceló M, Mansouri EL, Mercado JA, Quesada MA, Alfaro FP (1998) Regeneration and transformation via Agrobacterium tumefaciens of the strawberry cultivar Chandler. Plant Cell Tissue Organ Cult 54:29–36

    Article  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721

    Article  CAS  PubMed  Google Scholar 

  • Birch RG (1997) Plant transformation: problem and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Chalavi V, Tabaeizadeh Z, Thibodeau P (2003) Enhanced resistance to Verticillium dahliae in transgenic strawberry plants expressing a Lycopersicon chilense chitinase gene. J Am Soc Hortic Sci 128:747–753

    CAS  Google Scholar 

  • Cochram WG, Cox GM (1957) Experimental designs. Wiley, New York, p 611

    Google Scholar 

  • Cordero de Mesa M, Jiménez-Bermúdez S, Pliego-Alfaro F, Quesada MA, Mercado JA (2000) Agrobacterium cells as microprojectile coating: a novel approach to enhance stable transformation rates in strawberry. Aust J Plant Physiol 27:1093–1100

    Google Scholar 

  • Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703

    Article  CAS  PubMed  Google Scholar 

  • Debnath SC (2005) Strawberry sepal: another explant for thidiazuron-induced adventitious shoot regeneration. In Vitro Cell Dev Biol Plant 41:671–676

    Article  Google Scholar 

  • Debnath SC, Teixeira da Silva JA (2007) Strawberry culture in vitro: applications in genetic transformation and biotechnology. Fruit Veg Cereal Sci Biotechnol 1:1–12

    Google Scholar 

  • Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (cucumis melo l.) and expression from the cauliflower mosaic virus 35s promoter in transgenic melon plants. Bio/Technology 9:858–863

    Article  CAS  Google Scholar 

  • Drennan PM, Smith MT, Goldsworthy D, Van Staden J (1993) The occurrence of trehalose in the leaves of the desiccation-tolerant angiosperm Myrothamnus flabellifolius Welw. Plant Physiol 142:493–496

    CAS  Google Scholar 

  • Du Plessis HJ, Brand RJ, Glyn-Woods C, Goedhart MA (1997) Efficient genetic transformation of strawberry (Fragaria × ananassa Duch.) cultivar Selekta. Acta Hortic 447:289–294

    Google Scholar 

  • El Mansouri I, Mercado JA, Valpuesta V, Lopez-Aranda JM, Pliego-Alfaro F, Quesada MA (1996) Shoot regeneration and Agrobacterium-mediated transformation of Fragaria vesca L. Plant Cell Rep 15:642–646

    Article  CAS  Google Scholar 

  • Finstad K, Martin RR (1995) Transformation of strawberry for virus resistance. Acta Hortic 385:86–90

    Google Scholar 

  • Folta KM, Dhingra A (2006) Transformation of strawberry: the basis for translational genomics in rosaceae. In Vitro Cell Dev Biol Plant 42:482–490

    Article  CAS  Google Scholar 

  • Folta KM, Dhingra A, Howard L, Stewart P, Chandler CK (2006) Characterization of LF9, an octoploid strawberry genotype selected for rapid regeneration and transformation. Planta 224:1058–1067

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soyabean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJM, VanDun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  PubMed  Google Scholar 

  • Goddijn OJM, Verwoerd TC, Voogd E, Krutwagen RWHH, de Graaf PTHM, Poels J, van Dun K, Ponstein AS, Damm B, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113:181–190

    Article  CAS  PubMed  Google Scholar 

  • Godwin I, Todd G, Ford-Lloyd B, Newbury JH (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    Article  CAS  Google Scholar 

  • Graham J, McNicol RJ, Greig K (1995) Towards genetic based insect resistance in strawberry using the cowpea trypsin inhibitor gene. Ann Appl Biol 127:163–173

    Article  CAS  Google Scholar 

  • Gruchala A, Korbin M, Zurawicz E (2004a) Conditions of transformation and regeneration of ‘Induka’ and ‘Elista’ strawberry plants. Plant Cell Tissue Organ Cult 79:153–160

    Article  CAS  Google Scholar 

  • Gruchala A, Korbin M, Zurawicz E (2004b) Suitability of selected strawberry cultivars for genome modification by Agrobacterium tumefaciens. Acta Hortic 663:491–494

    Google Scholar 

  • Guivarc’h A, Caissard JC, Brown S, Marie D, Dewitte W, Van Onckelen H, Chriqui D (1993) Localization of target cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root discs. Protoplasma 174:10–18

    Article  Google Scholar 

  • Höfgen R, Willmitzer L (1990) Biochemical and genetic analysis of different patatin isoforms expressed in various organs of potato (Solanum tuberosum). Plant Sci 66:221–230

    Article  Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115

    Article  CAS  PubMed  Google Scholar 

  • Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA (1998) Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology 144:671–680

    Article  CAS  PubMed  Google Scholar 

  • Husaini AM, Abdin MZ (2007) Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cell Dev Biol Plant 43:567–584

    Google Scholar 

  • Husaini AM, Abdin MZ (2008) Development of transgenic strawberry (Fragaria × ananassa Duch.) plants tolerant to salt stress. Plant Sci 174:446–455

    Article  CAS  Google Scholar 

  • Husaini AM, Srivastava DK (2006) Genetic transformation in strawberry—a review. Asian J Microbiol Biotech Env Sc 8:75–81

    Google Scholar 

  • Husaini AM, Aquil S, Bhat M, Qadri T, Kamaluddin TA, Abdin MZ (2008) A high-efficiency direct somatic embryogenesis system for strawberry (Fragaria × ananassa Duch.) cultivar Chandler. J Crop Sci Biotech 11:107–110

    Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • James DJ, Passey AJ, Barbara DJ (1990) Agrobacterium mediated transformation of apple and strawberry using disarmed Ti-binary vectors. Acta Hortic 280:495–502

    Google Scholar 

  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectents like betaine or proline synergistically enhance Agrobacterium mediated transformation of apple. Plant Cell Rep 12:559–563

    Article  CAS  Google Scholar 

  • Jiménez-Bermúdez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a Pectate lyase gene. Plant Physiol 128:751–759

    Article  PubMed  Google Scholar 

  • Khan S, Qureshi MI, Kamaluddin TA, Abdin MZ (2007) Protocol for isolation of genomic DNA from dry and fresh roots of medicinal plants suitable for RAPD and restriction digestion. Afr J Biotechnol 6:175–178

    CAS  Google Scholar 

  • Landi L, Mezzetti B (2006) TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. Plant Cell Rep 25:281–288

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Gen 60:197–214

    Article  Google Scholar 

  • Li XG, Liu CN, Ritchie SW (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan VR, Sudhaka RB, Selvaraj N, Vasudevan A, Kasthurirengan A (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Martinelli A, Gaiani A, Cella R (1997) Agrobacterium-mediated transformation of strawberry cultivar Marmolada onebar. Acta Hortic 439:169–173

    CAS  Google Scholar 

  • Mathews H, Bharathan N, Litz RE, Narayanan KR, Rao PS, Bhatia CR (1990) The promotion of Agrobacterium mediated transformation in Atropa belladonna L. by acetosyringone. J Plant Physiol 136:404–409

    CAS  Google Scholar 

  • Mathews H, Wagoner W, Kellogg J, Bestwick R (1995) Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell Dev Biol Plant 31:36–43

    Article  CAS  Google Scholar 

  • Mathews H, Dewey V, Wagner W, Bestwick RK (1998) Molecular and cellular evidence of chimaeric tissues in primary transgenics and elimination of chimaerism through improved selection protocols. Transgenic Res 7:123–129

    Article  CAS  Google Scholar 

  • Mercado JA, Pliego-Alfaro F, Quesada MA (2007) Strawberry. In: Pua EC, Davey MR (eds) Transgenic crops V. Biotechnology in agriculture and forestry, vol 60. Springer, Berlin, pp 309–328

    Google Scholar 

  • Mezzetti B, Costantini E, Chionchetti F, Landi L, Pandolfini T, Spena A (2004) Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality. Acta Hortic 649:107–110

    Google Scholar 

  • Monticelli S, Gentile A, Damiano C (2002) Regeneration and Agrobacterium-mediated transformation in stipules of strawberry. Acta Hortic 567:105–107

    Google Scholar 

  • Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferrieere N, Monkolsook Y, Kanthapura R, Adunsadthapong S (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275

    Article  CAS  Google Scholar 

  • Nehra NS, Chibber RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990a) Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep 9:293–298

    CAS  Google Scholar 

  • Nehra NS, Chibber RN, Kartha KK, Datla RSS, Crosby WL, Stushnoff C (1990b) Agrobacterium transformation of strawberry calli and recovery of transgenic plants. Plant Cell Rep 9:10–13

    CAS  Google Scholar 

  • Oosumi T, Gruszewski HA, Blischak LA, Baxter AJ, Wadl PA, Shuman JL, Veilleux RE, Shulaev V (2006) High-efficiency transformation of the diploid strawberry (Fragaria vesca) for functional genomics. Planta 223:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Passey AJ, Barrett KJ, James DJ (2003) Adventitious shoot regeneration from seven commercial strawberry cultivars (Fragaria × ananassa Duch.) using a range of explant types. Plant Cell Rep 21:397–401

    CAS  PubMed  Google Scholar 

  • Pramanik MHR, Imai R (2005) Functional identification of a trehalose-6-phosphatise gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol Biol 58:751–762

    Article  CAS  PubMed  Google Scholar 

  • Puite K, Schaart J (1998) Agrobacterium-mediated transformation of the apple cultivars Gala, Golden delicious and Elstar, and the strawberry cultivars Gariguette, Polka and Elsanta. Acta Hortic 484:547–556

    Google Scholar 

  • Qin YH, Zhang SL, Asghar S, Zhang LX, Qin QP, Xu CJ, Chen KS (2005) Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Sci 168:1425–1431

    Article  CAS  Google Scholar 

  • Qin YH, Teixeira da Silva JAT, Zhang LX, Zhang SL (2008) Transgenic strawberry: state of the art for improved traits. Biotech Adv 26:219–232

    Article  CAS  Google Scholar 

  • Quesada MA, Martín-Pizarro C, García-Gago JA, Posé S, Santiago N, Sesmero R, Pliego-Alfaro F, Mercado JA (2007) Transgenic strawberry: current status and future perspectives. Transgenic Plant J 1:280–288

    Google Scholar 

  • Rangana S (1986) Handbook of analysis and quality control for fruit and vegetable products, 2nd edn. Tata McGraw Hill Publishing Co. Ltd, New Delhi, p 1112

    Google Scholar 

  • Ricardo VG, Coll Y, Castagnaro A, Diaz Ricci JC (2003) Transformation of a strawberry cultivar using a modified regeneration medium. HortScience 38:277–280

    Google Scholar 

  • Schaart JG, Salentijn MJ, Krens FA (2002) Tissue specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Rep 21:313–319

    Article  CAS  Google Scholar 

  • Shestibratov KA, Dolgov SV (2005) Transgenic strawberry plants expressing a thaumatin II gene demonstrate enhanced resistance to Botrytis cinerea. Sci Hortic 106:177–189

    Article  Google Scholar 

  • Shiekholeslam SN, Weeks DP (1987) Acetosyringone promotes high efficiency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    Article  Google Scholar 

  • Sorvari S, Ulvinen S, Hietaranta T, Hiirsalmi H (1993) Preculture medium promotes direct shoot regeneration from micropropagated strawberry leaf disks. HortScience 28:55–57

    Google Scholar 

  • Sriskandarajah S, Frello S, Jorgensen K, Serek M (2004) Agrobacterium tumefaciens-mediated transformation of Campanula carpatica: factors affecting transformation and regeneration of transgenic shoots. Plant Cell Rep 23:59–63

    Article  CAS  PubMed  Google Scholar 

  • Styrvold OB, Strom AR (1991) Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains: influence of amber suppressors and function of the periplasmic trehalase. J Bacteriol 173:1187–1192

    CAS  PubMed  Google Scholar 

  • Tanprasert P, Reed BM (1998) Detection and identification of bacterial contaminants of strawberry runner explants. Plant Cell Tissue Organ Cult 52:53–55

    Article  Google Scholar 

  • Van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–36

    Article  Google Scholar 

  • Vergauwe A, Van Geldre E, Inze D, Van Montagu M, Van den Eeckhout E (1998) Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep 18:105–110

    Article  CAS  Google Scholar 

  • Voth V, Bringhurst RS (1984) Strawberry plant ‘Chandler’. United States Patent PP05262. http://www.freepatentsonline.com/PP05262.html

  • Wang J, Ge H, Peng S, Zhang H, Chen P, Xu J (2004) Transformation of strawberry (Fragaria ananassa Duch.) with late embryogenesis abundant protein gene. J Hortic Sci Biotechnol 79:735–738

    CAS  Google Scholar 

  • Wawrzyńczak D, Sowik I, Michalczuk L (2000) Agrobacterium-mediated transformation of five strawberry genotypes. J Fruit Ornam Plant Res 8:1–8

    Google Scholar 

  • Weir B, Gu X, Wang MB, Upadhyaya N, Elliott AR, Brettell RIS (2001) Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. Aust J Plant Physiol 28:807–818

    CAS  Google Scholar 

  • Yonghua Q, Shanglong Z, Asghar S, Lingxiao Z, Qiaoping Q, Kunsong C, Changjie X (2005) Regeneration mechanism of Toyonoka strawberry under different color plastic films. Plant Sci 168:1409–1424

    Article  Google Scholar 

  • Zhang HM, Wang JL (2005) Establishment of genetic transformation system of “Allstar” strawberry leaf. Biotechnology 15:68–70

    Google Scholar 

  • Zhao Y, Liu Q, Davis RE (2004) Transgene expression in strawberries driven by a heterologous phloem-specific promoter. Plant Cell Rep 23:224–230

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Amjad M. Husaini is thankful to Council of Scientific and Industrial Research, Government of India, for the financial support to this project. He is highly thankful to Dr. Ab. Matteen Rafiqi, University of Chicago, for his critical review and valuable help extended during the preparation of this research paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Masood Husaini.

Additional information

Communicated by K. Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Husaini, A.M. Pre- and post-agroinfection strategies for efficient leaf disk transformation and regeneration of transgenic strawberry plants. Plant Cell Rep 29, 97–110 (2010). https://doi.org/10.1007/s00299-009-0801-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-009-0801-4

Keywords

Navigation