Skip to main content
Log in

Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Chickpea is the world’s third most important pulse crop and India produces 75% of the world’s supply. Chickpea seeds are attacked byCallosobruchus maculatus andC. chinensis which cause extensive damage. The α-amylase inhibitor gene isolated fromPhaseolus vulgaris seeds was introduced into chickpea cultivar K850 throughAgrobacterium- mediated transformation. A total of 288 kanamycin resistant plants were regenerated. Only 0.3% of these were true transformants. Polymerase chain reaction (PCR) analysis and Southern hybridization confirmed the presence of 4.9 kb α-amylase inhibitor gene in the transformed plants. Western blot confirmed the presence of α-amylase inhibitor protein. The results of bioassay study revealed a significant reduction in the survival rate of bruchid weevilC. maculatus reared on transgenic chickpea seeds. All the transgenic plants exhibited a segregation ratio of 3:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boulter D 1993 Insect pest control by copying nature using genetically engineered crops;Phytochemistry 34 1453–1466

    Article  CAS  Google Scholar 

  • Dayal S, Lavanya M, Devi P and Sharma K K 2003 An efficient protocol for shoot regeneration and genetic transformation of pigeon pea [Cajanus cajan (L.) Millsp.] using leaf explants;Plant Cell Rep. 21 1072–1079

    Article  CAS  Google Scholar 

  • Ditta G, Stanfield S, Corbin D and Helinski D R 1980 Bruchid host range cloning system for gram-negative bacterium. Construction of gene bank ofRhizobium meliloti;Proc. Natl. Acad. Sci. USA 77 7347–7351

    Article  CAS  Google Scholar 

  • Geervani P and Umadevi T 1989 Effect of maturation of nutrient composition of selected vegetable legumes;J. Sci. FoodAgric. 46 243–248

    Article  CAS  Google Scholar 

  • Grant J E, Thomsons L M J, Joyce M D P, Dale T M and Cooper P A 2003 Influence ofAgrobacterium tumefaciens strain on the production of transgenic peas (Pisum sativum L.);Plant Cell Rep. 12 1207–1210

    Article  Google Scholar 

  • Ishimoto M and Chrispeels M J 1996 Protective mechanism of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean;Physiol. Plant. 111 393–401

    Article  Google Scholar 

  • Ishimoto M, Sato T, Chrispeels M J and Kitamura K 1996 Bruchid resistance of transgenic azuki bean expressing seeds α-amylase inhibitor of the common bean;Entmol. Exp Appl. 79 309–315

    Article  Google Scholar 

  • Jaiwal P K, Kumari R, Ignacimuthu S, Potrykus I and Sautter C 2001Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek) - a recalcitrant grain legume;Plant Sci. 161 239–247

    Article  CAS  Google Scholar 

  • Jefferson R A 1987 Assaying Chimeric genes in plants: theGus gene fusion system;Plant Mol. Biol. Rep. 5 387–405

    Article  CAS  Google Scholar 

  • Kar S, Basu D, Das S, Ramakrishnan N A, Mukherjee P, Nayak P, Sen S K 1997 Expression of cry 1A(c) gene ofBacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae;Trans. Res. 6 177–185

    Article  CAS  Google Scholar 

  • Krishnamurthy K V, Suhasini K, Sagare A P, Meixner M, de Kathen A, Pickardt T, Schieder O and Kathen de A 2000Agrobacterium mediated transformation of chickpea (Cicer arietinum L.) embryo axes;Plant Cell Rep. 19 235–240

    Article  CAS  Google Scholar 

  • Morton R L, Schroeder H E, Bate K S, Chrispeels M J, Armstron G E and Higgins T J V 2000 Bean α-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions;Proc. Natl. Acad. Sci. USA 97 3820–3825

    Article  CAS  Google Scholar 

  • Piergiovanni A R 1992 Effects of some experimental parameters on the activity of cowpea alpha amylase inhibitors;Lebens. Wiss. Technol. 25 321–324

    CAS  Google Scholar 

  • Rogers S O and Bendich A J 1994 Extraction of total cellular DNA from plants, algae and fungi; inPlant molecular biology (eds) S B Gelvin and R A Schilperoort (The Netherlands: Kluwer) 2nd edition, D1, pp 1–8.

    Google Scholar 

  • Ryan C A 1990 Protease inhibitors in plants. Genes for improving defense against insects and pathogens;Annu. Rev. Phytopathol. 28 25–45

    Article  Google Scholar 

  • Saini R, Jaiwal S and Jaiwal PK 2003 Stable genetic transformation ofVigna mungo L. Hepper viaAgrobacterium tumefaciens;Plant Cell Rep. 21 701–705

    Google Scholar 

  • Sanyal I, Singh A K and Amala D V 2003Agrobacterium tumefaciens-mediated transformation of chickpea (Cicer arietinum L.) using mature embryonic axes and cotyledonary nodes;Indian J. Biotechnol. 2 524–532

    CAS  Google Scholar 

  • Sarmah B K, Moore A, Tate W, Molvig L, Morton R L, Rees D P, Chiaiese P, Chrispeels M J, Tabe L M and Higgins T J V 2004 Transgenic chickpea seeds expressing high levels of a bean α-amylase inhibitor;Mol. Breed. 14 73–82.

    Article  CAS  Google Scholar 

  • Schroeder H E, Gollash S and Moore A 1995 Bean α-amylase inhibitor confers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.);Plant Physiol. 107 1233–1239

    Article  CAS  Google Scholar 

  • Shade R E, Schroeder R E, Poueyo J J, Tabe L M, Murdock L I, Higgins T J V and Chrispeels M J 1994 Transgenic pea seeds expressing the α-amylase inhibitor of the common bean are resistant to bruchid beetles;Bio/Technology 12 793–796

    CAS  Google Scholar 

  • Singh K B, Malhotra R S, Halila H M, Knights E J and Verma M M 1994 Current status and future strategy in breeding chickpea for resistance to biotic and abiotic stresses;Euphytica 73 137–149

    Article  Google Scholar 

  • Soni G L, George M and Singh R 1982 Role of common Indian pulses as hypocholesterolemic agents;Indian J. Nutr. Diebet. 19 184–189

    Google Scholar 

  • Tewari-Singh N, Sen J, Kiesecker H, Reddy V S, Jacobsen H J and Guha-Mukherjee S 2004 Use of herbicide or lysine plus threonine for non-antibiotic selection of transgenic chickpea;Plant Cell Rep. 22 576–583

    Article  CAS  Google Scholar 

  • Ussuf K K, Laxmi N H and Mita R 2001 Protease inhibitors: plant derived genes of insecticidal protein for developing insect resistant transgenic plants;Curr. Sci. 80 847–853

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ignacimuthu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignacimuthu, S., Prakash, S. Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J. Biosci. 31, 339–345 (2006). https://doi.org/10.1007/BF02704106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02704106

Keywords

Navigation