Skip to main content

Biotechnology for Insect Pest Management in Vegetable Crops

  • Chapter
  • First Online:
Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants

Abstract

Vegetables form a major component in the everyday diet of the human population. The increasing attention of people towards improved health has resulted in an increased desire of consumers to eat more vegetables. However, the sustained productivity of vegetables is challenged by an array of biotic and abiotic factors, with insects being the major concern. Commercialization of genetically engineered insect resistance for vegetable crops has not occurred, which is a threat to increasing productivity. Additionally, excessive use of insecticides has resulted in adverse effects on environment, human health, and development of resistance in the insects. However, recent advances in genetic engineering have demonstrated the possibility of incorporating foreign genes for desired traits, including insect resistance. Scientists have now embarked on testing a range of genes that can be used effectively to engineer for insect resistance. They have also been developing various novel strategies for combined expression of these genes under the control of different promoters. This chapter describes various genes, strategies, and the utility of genetic engineering for the development of insect-resistant plants. It also describes the importance of resistance management, which is a critical component for this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdeen A, Virgos A, Olivella E, Villanueva J, Aviles X, Gabarra R, Prat S (2005) Multiple insect resistance in transgenic tomato plants over-expressing two families of plant proteinase inhibitors. Plant Mol Biol 57: 189–202

    Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arencibia A, Vasquez RI, Prieto D, Tellez P, Carmina ER, Caego A, Hernandez L, Dela Riva GA, Selman-Housein G (1997) Transgenic sugarcane plants resistant to stem borer. Mol Breed 3: 247–255

    Google Scholar 

  • Arpaia SG, Mennella V, Onofaro E, Perri F, Sunseri, Rotino GL (1997) Production of transgenic eggplant (Solanum melongena L.) resistant to Colorado potato beetle (Leptinotarsa decemlineata Say). Theor Appl Genet 95:329–334

    CAS  Google Scholar 

  • Arpaia S, De Marzo L, Di Leo GM, Santoro ME, Mennella G, vanLoon JJA (2000) Feeding behavior and reproductive biology of colorado potato beetle adults fed transgenic potatoes expressing the Bacillus thuringiensis cry3B endotoxin. Entomol Exp Appl 95:31–37

    Google Scholar 

  • Atkinson RG, Bolitho KM, Wright MA, Iturriagagoitia-Bueno T, Reid SJ, Ross GS (1998) Apple ACC-oxidase and polygalacturonase: ripening-specific gene expression and promoter analysis in transgenic tomato. Plant Mol Biol 38:449–460

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay S, Roy A, Das S (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Sci 61:1025–1033

    Google Scholar 

  • Banerjee S, Hess D, Majumder P, Roy D, Das S (2004) The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid. J Biol Chem 279:23782–23789

    CAS  PubMed  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  • Benfey PN, Chua NH (1989) Regulated genes in transgenic plants. Science 244:174–181

    CAS  PubMed  Google Scholar 

  • Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB, Chopra VL (2002) Development of insect-resistant transgenic cabbage plants expressing a synthetic cryIA(b) gene from Bacillus thuringiensis. Curr Sci 83:146–150

    CAS  Google Scholar 

  • Borgio JF (2010) RNAi mediated gene knockdown in sucking and chewing insect pests. J Biopesticides 3:386–393

    Google Scholar 

  • Boulter D (1993) Insect pest control by copying nature using genetically engineered crops. Phytochemistry 34:1453–1466

    CAS  PubMed  Google Scholar 

  • Bravo A, Del Rincon-Castro MC, Ibarra JE, Soberón M (2011) Towards a healthy control of insect pest: potential use of microbial insecticides. In: López O & Fernandez-BolanËœos JG (eds) Green trends in insect control. Royal Society of Chemistry, London, pp 266–299

    Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 340–342

    Google Scholar 

  • Buchner P, Rochat C, Wuilleme S, Boutin JP (2002) Characterization of a tissue-specific and developmentally regulated b-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol 49:171–186

    CAS  PubMed  Google Scholar 

  • Burkness EC, Dively G, Patton T, Morey AC, Hutchison WD (2010) Novel Vip3A Bacillus thuringiensis (Bt) maize approaches high-dose efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) under field conditions Implications for resistance management. GM Crops 1:337–343

    PubMed  Google Scholar 

  • Bustos MM, Guiltinan MJ, Jordano J, Begum D, Kalkan FA, Hall TC (1989) Regulation of beta-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean beta-phaseolin gene. Plant Cell 1:839–853

    PubMed Central  CAS  PubMed  Google Scholar 

  • Callis J, Raasch JA, Vierstra RD (1990) Ubiquitin extension proteins of Arabidopsis thaliana structure, localization and expression of their promoters in transgenic tobacco. J Biol Chem 265:12486–12493

    CAS  PubMed  Google Scholar 

  • Cao J, Ibrahim H, Garcia JJ, Mason H, Granados RR, Earle ED (2002) Transgenic tobacco plants carrying a baculovirus enhancin gene slow the development and increase the mortality of Trichoplusia ni larvae. Plant Cell Rep 21:244–250

    CAS  Google Scholar 

  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein, control diamondback moth larvae resistant to Cry1A or Cry1C. Mol Breed 5:131–141

    CAS  Google Scholar 

  • Carre IA, Kay SA (1995) Multiple DNA-protein complexes at a circadian regulated promoter element. Plant Cell 7:2039–2051

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carsolio C, Campos F, Sanchez F, Rocha-Sosa M (1994) The expression of a chimeric Phaseolus vulgaris nodulin 30-GUS gene is restricted to the rhizobially infected cells in transgenic Lotus corniculatus nodules. Plant Mol Biol 26:1995–2001

    CAS  PubMed  Google Scholar 

  • Canedo V, Benavides J, Golmirzaie A, Cisneros F, Ghislain M, Langnaoui A (1999) Assessing Bt-transformed potatoes for potato tuber moth, Phthorimaea operculella (Zeller), management. CIP Program Report 1997-1989, CIP, Lima.

    Google Scholar 

  • Chen Q, Jelenkovic G, Chin C-K, Billings S, Eberhardt J, Goffreda JC (1995) Transfer and transcriptional expression of coleopteran CryIIIB endotoxin gene of Bacillus thuringiensis in eggplant. J Am Soc Hortic Sci 120:921–927

    CAS  Google Scholar 

  • Christou P, Capell T, Kohli A, Gatehouse JA, Gatehouse AMR (2006) Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci 11:302–308

    CAS  PubMed  Google Scholar 

  • Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetles compensate nutritional stress on Oryzacystatin I-transgenic potato by hypertrophic behavior and over-production of insensitive proteases. Arch Insect Biochem Physiol 44:69–81

    CAS  PubMed  Google Scholar 

  • Corbin DR, Grebenok RJ, Ohnmeiss TE, Greenplate JT, Purcell JP (2001) Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126(3):1116–1128

    Google Scholar 

  • Davidson M, Jacobs J, Reader J, Butler R, Frater CM, Markwick NP, Wratten SD, Conner AJ (2002) Development and evaluation of potatoes transgenic for a cry1Ac9 gene conferring resistance to potato tubermoth. J Am Soc Hortic Sci 127:590–596

    CAS  Google Scholar 

  • de Sousa-majer MJ, Hardie DC, Turner NC, Higgins TJV (2007) Bean α-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1422

    PubMed  Google Scholar 

  • Deikman J, Fisher RL (1988) Interaction of a DNA binding factor with the 5′ flanking region of anethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320

    Google Scholar 

  • Douches DS, Li W, Zarka K, Coombs J, Pett WL, Grafius EJ, El-Din T (2002) Germplasm release of Bt-cry5 Spunta, insect resistant potato lines G2 and G3. Hort Science 37(7):1103–1107

    Google Scholar 

  • Dowd PF, Lagrimini LM (1997) Advances in Insect control.n: Carozzi N, Koziel M (eds) Role of transgenic plants. Taylor and Francis, pp 195–223

    Google Scholar 

  • Delannay X, LaVallee BJ, Proksc KZ, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischho DA (1989) Field performance of transgenic tomato plants expressing Bacillus thuringiensis var kurstaki insect control protein. Bio/Technology 7:1265–1269

    Google Scholar 

  • Ding LC, Hu CY, Yeh KW, Wang PJ (1998) Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep 17:854–860

    CAS  Google Scholar 

  • Diekman J, Fisher RL (1988) Interaction of a DNA binding factor with the 5’ flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7:3315–3320

    Google Scholar 

  • Down RE, Gatehouse AMR, Hamilton WDO, Gatehouse JA (1996) Snowdrop lectin inhibits development and decreases fecundity of the glasshouse potato aphid (Aulacorthum solani) when administered in vitro and via transgenic plants both in laboratory and glasshouse trials. J Insect Physiol 42:1035–1045

    CAS  Google Scholar 

  • Dutta I, Majumder P, Saha P, Ray K, Das S (2005a) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea). Plant Sci 169:996–1007

    Google Scholar 

  • Dutta I, Saha P, Majumder P, Sarkar A, Chakraborti D, Banerjee S, Das S (2005b) The efficacy of a novel insecticidal protein, Allium sativum leaf lectin (ASAL) against homopteran insect monitored in transgenic tobacco. Plant Biotechnol J 3:601–611

    Google Scholar 

  • Earle ED, Cao J, Shelton AM (2004) Insect-resistant transgenic Brassicas. In: Pua EC, Douglas CJ (eds) Biotechnology in agriculture and forestry, vol 54. Springer, Berlin, pp 227–252

    Google Scholar 

  • Ebora RV, Ebora MM, Sticklen MB (1994) Transgenic potato expressing the Bacillus thuringiensis cry1Ac gene effects on the survival and food consumption of Phthorimaea operculella (Lepidoptera:Gelechiidae) and Ostrinia nubilalis (Lepidoptera: Noctuidae). J Econ Entomol 87:1122–1127

    Google Scholar 

  • Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against Lepidopteran insects. Proc Natl Acad Sci U S A 93:5389–5394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fang H-J, Li D-L, Wang G-L (1997) An insect resistant transgenic cabbage plant with Cowpea Trypsin inhibitor (CPT) gene. Acta Bot Sin 39:940–945

    CAS  Google Scholar 

  • Feitelson JS, Payne J, Kim L (1992) Bacillus thuringiensis-insects and beyond. Bio/Technology 10:271–275

    Google Scholar 

  • Fischhoff DA, Katherine SB, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kretzmer KK, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Nat Biotech 5:807–813

    CAS  Google Scholar 

  • Fitches E, Gatehouse AMR and Gatehouse JA (1997) Effects of snowdrop lectins (GNA) delivered via artificial diet and in transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. Insect Physiol 43:727–739

    Google Scholar 

  • Foissac X, Thi Loc N, Christou P, Gatehouse AM, Gatehouse JA (2000) Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46:573–583

    CAS  PubMed  Google Scholar 

  • Franco OL, Rigden DJ, Melo FR, Grossi-de-Sa ÂMF (2002) Plant a-amylase inhibitors and their interaction with insect a-amylases. Structure, function and potential for crop protection. Eur J Biochem 269:397–412

    CAS  PubMed  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit specific manner. Proc Natl Acad Sci U S A 99:1092–1097

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fruhling M, Schroder G, Hohnjec N, Puhler A, Perlick AM, Kuster H (2000) The promoter of the Vicia faba L. gene VfEnod12 encoding an early nodulin is active in cortical cells and nodule primordia of transgenic hairy roots of Vicia hirsuta as well as in the prefixing zone II of mature transgenic V. hirsuta root nodules. Plant Sci 160:67–75

    CAS  PubMed  Google Scholar 

  • Garbarino JE, Belknap WR (1994) Isolation of a ubiquitin-ribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol Biol 24:119–127

    CAS  PubMed  Google Scholar 

  • Gatehouse AMR (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gatehouse AMR, Hilder VA (1994) Genetic manipulation of crops for insect resistance. In: Marshall G, Walters D (eds) Molecular perspectives: crop protection. Chapman and Hall, London, pp 177–201

    Google Scholar 

  • Gatehouse AMR, Shi Y, Powell KS, Brough C, Hilder VA, Hamilton WDO, Newell CA, Merryweather A, Boulter D, Gatehouse JA (1993) Approaches to insect resistance using transgenic plants. Phil Trans R Soc London Biol Sci 342:279–286

    Google Scholar 

  • Gatehouse AMR, Down RE, Powell KS, Sauvion N, Rahbé Y, Newell CA, Merryweather A, Hamilton WDO, Gatehouse JA (1996) Transgenic potato plants with enhanced resistance to the peach-potato aphid, Myzus persicae. Entomol Exp Appl 79:295–307

    Google Scholar 

  • Gatehouse AMR, Davison GM, Newell CA, Hamilton WDO, Burgess EPJ, Gilbert RJC, Gatehouse JA (1997) Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol Breed 3:49–63

    CAS  Google Scholar 

  • Genschik P, Marbach J, Uze M, Feuerman M, Plesse B, Fleck J (1994) Structure and promoter activity of a stress and developmentally regulated polyubiquitin-encoding gene of Nicotiana tabacum. Gene 148:195–202

    CAS  PubMed  Google Scholar 

  • Gilmartin PM, Chua NH (1990) Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell 2:447–455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23:283–290

    CAS  PubMed  Google Scholar 

  • Hagh ZG, Rahnama H, Panahandeh J, Baghban B, Rouz K, Morad K, Jafari A, Mahna N (2009) Green-tissue-specific, C4-PEPC-promoter-driven expression of Cry1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaea operculella, Zeller). Plant Cell Rep 28:1869–1879

    CAS  Google Scholar 

  • Hermann SR, Harding RM, Dale JL (2001) The banana actin 1 promoter drives near-constitutive transgene expression in vegetative tissues of banana (Musa spp.). Plant Cell Rep 20:525–530

    CAS  Google Scholar 

  • Hernandez-Garcia CM, Martinelli AP, Bouchard RA, Finer JJ (2009) A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Rep 28:837–849

    CAS  PubMed  Google Scholar 

  • Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, Van Damme EJM, Boulter D (1995) Expression of snowdrop lectin in transgenic tobacco results in added protection against aphids. Transg Res 4:18–25

    CAS  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol Rev 53:242–255

    CAS  Google Scholar 

  • Holtorf A, Apel K, Bohlmann H (1995) Comparison of different constitutive and inducible promoters for the overexpression of transgene in Arabidopsis thaliana. Plant Mol Biol 29:637–646

    CAS  PubMed  Google Scholar 

  • Hamilton GC, Jelenkovic GL, Lashomb JH, Ghidiu G, Billings S, Patt JM (1997) Effectiveness of transgenic eggplant (Solanum melongena L.) against the Colorado potato beetle. Adv Hort Sci 11:189–192

    Google Scholar 

  • Iannacone R, Grieco PD, Cellini F (1997) Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance. Plant Mol Biol 34:485–496

    Google Scholar 

  • Innacone R, Flore MC, Macchi A, Grieco PD Arpaia S, Perrone D, Mennella G, Sunseri F, Cellini F, Rotino GL (1995) Genetic engineering of eggplant (Solanum melongena L.). Acta Hortic 392: 227–233

    Google Scholar 

  • Ishimoto M, Sato T, Chrispeels MJ, Kitamura K (1996) Bruchid resistance of transgenic azuki bean expressing seed amylase inhibitor of common bean. Entomol Exp Appl 79:309–315

    Google Scholar 

  • Jansens S, Cornelissen M, de Clercq R, Reynaert, Peferoen M (1995) Phthorimaea operculella (Lepidoptera: Gelechiidae) resistance in potato by expression of the Bacillus thuringiensis cry1Ab insecticidal crystal protein. J Econ Entomol 88:1469–1476

    Google Scholar 

  • Jefferson R, Goldsbrough A, Bevan M (1990) Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol 14:995–1006

    CAS  PubMed  Google Scholar 

  • JelenkovicJ, Billings S, Chen Q, Lashomb J, Hamilton G, Ghidiu G (1998) Transformation of eggplant with synthetic cryIIIA gene produces a high level of resistance to Colorado potato beetle. J Amer Soc Hort Sci 123: 19–25

    Google Scholar 

  • Kluth A, Sprunck S, Becker D, Lorz H, Lutticke S (2002) 5′ deletion of a gbss1 promoter region leads to changes in tissue and developmental specificities. Plant Mol Biol 49:669–682

    CAS  PubMed  Google Scholar 

  • Krattiger AF (1997) Insect resistance in crops: a case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. ISAAA Briefs No. 2. ISAAA: Ithaca, New York

    Google Scholar 

  • Kumar H, Kumar V (2004) Tomato expressing Cry1A(b) insecticidal protein from Bacillus thuringiensis protected against tomato fruit borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) damage in the laboratory, greenhouse and Weld. Crop Prot 23:135–139

    CAS  Google Scholar 

  • Kumar M, Gupta GP, Rajam MV (2009) Silencing of acetylcholinesterase gene of Helicoverpa armigera by siRNA affects larval growth and its life cycle. J Insect Physiol 55: 273–278

    Google Scholar 

  • Kumar PA, Mandaokar A, Sreenivasu K, Chakrabarti SK, Bisaria S, Sharma SR, Kaur S, Sharma RP (1998) Insect-resistant transgenic brinjal plants. Mol Breed 4:33–37

    CAS  Google Scholar 

  • Leach F, Aoyagi K (1991) Promoter analysis of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes: enhancer and tissue-specific DNA determinants are dissociated. Plant Sci 79:69–76

    CAS  Google Scholar 

  • Lecardonnel A, Chauvin L, Jouanin L, Beaujean A, Prevost G, Sangwan Norreel B (1999) Effects of rice cystatin I expression in transgenic potato on Colorado potato beetle larvae. Plant Sci 140:71–79

    CAS  Google Scholar 

  • Lee RY, Reiner D, Dekan G, Moore AE, Higgins TJV, Epstein MM (2013) Genetically modified a-amylase inhibitor peas are not specifically allergenic in mice. PLoS One 8(1):e52972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liu XJ, Rocha-Sosa M, Hummel S, Willmitzer L, Frommer WB (1991) A detailed study of the regulation and evolution of the two classes of patatin genes in Solanum tuberosum L. Plant Mol Biol 17:1139–1154

    CAS  PubMed  Google Scholar 

  • Liu D, Burton S, Glancy T, Li ZS, Hampton R, Meade T, Merlo DJ (2003) Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TedA in Arabidopsis thaliana. Nature Biotech 21:1222–1228

    Google Scholar 

  • Li W, Zarka K, Douches DS, Coombs J, Pett W, Grafius EJ (1999) Co-expression of potato PVY coat protein and cryV-Bt genes in potato. J Am Soc Hortic Sci 123: 218–223

    Google Scholar 

  • Logemann J, Lipphardt S, Lörz H, Hauser I, Willmitzer L, Schell J (1989) 50 upstream sequences from the wun1 gene are responsible for gene activation by wounding in transgenic plants. Plant Cell 1:151–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maeo K, Tomiya T, Hayashi K, Akaiki M, Morikama A, Ishiguro S, Nakamura K (2001) Sugar-responsible elements in the promoter of a gene for b-amylase of sweet potato. Plant Mol Biol 46:627–637

    CAS  PubMed  Google Scholar 

  • Mandal S, Kundu P, Roy B, Mandal RK (2002) Precursor of the inactive 2S seed storage protein from the Indian mustard Brassica juncea is a novel trypsin inhibitor: characterization, post-translational processing studies, and transgenic expression to develop insect-resistant plants. J Biol Chem 277:37161–37168

    CAS  PubMed  Google Scholar 

  • Mandaokar A, Goyal RK, Shukla A, Bhalla R, Chaurasia A, Reddy VS, Altosaar I, Sharma RP, Kumar PA (2000) Transgenic tomato plants resistant to fruitborer (Helicoverpa armigera Hubner). Crop Protection 19:307–312

    CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25(11):1307–1313

    Google Scholar 

  • Metz TD, Dixit R, Earie ED (1995a) Agrobacterium-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B oleraceae var. capitata). Plant Cell Rep 15: 287–292

    Google Scholar 

  • Metz TD, Roush RT, Tang JD, Sheton AM, Earie E (1995b) Transgenic broccoli expressing Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol Breed 1: 309–317

    Google Scholar 

  • Milne R, Kaplan H (1993) Purification and characterisation of a trypsin like digestive enzyme from spruce budworm (Christoneura fumiferana) responsible for the activation of d-endotoxin from Bacillus thuringiensis. Insect Bioch Mol Biol 23:663–673

    CAS  Google Scholar 

  • Mittal A, Kumari A, Kalia V, Singh D, Gujar, GT (2007) Spatial and temporal baseline susceptibility of Diamondback Moth, Plutella xylostella, to Bacillus thuringiensis spore crystal mixture, purified crystal toxins and mixtures of cry toxins in India. Biopesticides Int 3:58–70

    Google Scholar 

  • Mohammed A, Douches DS, Pett W, Grafius E, Coombs J, Liswidowati Li W, Madkour MA (2000) Evaluation of potato tuber moth (Lepidoptera: Gelechiidae) resistance in tubers of Bt-cry1Ia1 transgenic potato lines. J Economic Entomol 93:472–476.

    Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJV (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97:3820–3825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    CAS  PubMed  Google Scholar 

  • Pardo-López L, Soberón M, Bravo A (2013) Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 37(1):3–22

    Google Scholar 

  • Pattanayak D, Solanke AKU, Kumar PA (2013) Plant RNA interference pathways: diversity in function, similarity in action. Plant Mol Biol Rep 31(3) 493–506

    Google Scholar 

  • Paul A, Sharma SR, Sresty TVS, Shantibala D, Suman B, Kumar PS, Saradhi PP, Frutos R, Altosar I, Kumar PA (2005) Transgenic cabbage (Brassica oleracea var. Capitata) resistant to Diamondback moth (Plutella xylostella). Ind J Biotech 4:72–77

    CAS  Google Scholar 

  • Pear JR, Ridge N, Rasmusgen R, Rose RE, Houck CM (1989) Isolation and characterization of a fruit-specific cDNA and the corresponding genomic clone from tomato. Plant Mol Biol 13:639–651

    CAS  PubMed  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, Mcpherson SA, Wyman J, Love S, Reed G, Biever D, Fishchhof DA (1993) Genetically engineered potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22: 313–321

    Google Scholar 

  • Potenza C, Aleman L, Sengupta-Gopalan C (2004) Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell Dev Biol-Plant 40:1–22

    CAS  Google Scholar 

  • Powell KS (2001) Antimetabolic effects of plant lectins towards nymphal stages of the planthoppers Tarophagous proserpina and Nilaparvata lugens. Entomol Exp Appl 99:71–77

    CAS  Google Scholar 

  • Powell KS, Gatehouse AMR, Hilder VA, Van Damme EJM, Peumans WJ, Boonjawat J, Horsham K, Gatehouse JA (1995) Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomol Exp Appl 75:61–65

    CAS  Google Scholar 

  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J Agric Food Chem 53:9023–9030

    CAS  PubMed  Google Scholar 

  • Ramesh S, Nagadhara D, Reddy VD, Rao KV (2004) Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci 166:1077–1085

    CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AM, Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper. Plant J 15:469–477

    CAS  PubMed  Google Scholar 

  • Sadeghi A, Broeders S, Hernalsteens JP, De Greve H, Peumans WJ, Van Damme EJM, Smagghe G (2007) Expression of garlic leaf lectin under the control of the phloem-specific promoter Asus1 from Arabidopsis thaliana protects tobacco plants against the tobacco aphid (Myzus nicotianae). Pest Manage Sci 63:1215–1223

    CAS  Google Scholar 

  • Saha P, Majumder P, Dutta I, Ray T, Roy SC, Das S (2006) Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests. Planta 223:1329–1343

    CAS  PubMed  Google Scholar 

  • Salama HS, Sharaby A (1985) Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Sci Appl 6:503–511

    Google Scholar 

  • Sauvion N, Rahbe Y, Peumans WJ, Van Damme EJM, Gatehouse JA, Gatehouse AMR (1996) Effects of GNA and other mannose binding lectins on development and fecundity of the potato-peach aphid Myzus persicae. Entomol Exp Appl 79:285–293

    CAS  Google Scholar 

  • Schaart JG, Salentijn EMJ, Krens FA (2002) Tissue-specific expression of the β-glucuronidase reporter gene in transgenic strawberry (Fragaria × ananassa) plants. Plant Cell Rep 21:313–319

    CAS  Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci U S A 103 1129–1134

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16: 168–175

    Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S (1995) Bean α-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus-pisorum) in Transgenic Peas (Pisum-sativum L) Plant Physiol 109: 1129–1129

    Google Scholar 

  • Schuler TH, Poppy GM, Kerry BR, Denholm I (1998) Insect-resistant transgenic plants. Trends Biotechnol 16: 168–175

    Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM (1995) Bean Alpha-Amylase Inhibitor Confers Resistance to the Pea Weevil (Bruchus pisorum) in Transgenic Peas (Pisum sativum L.). Plant Physiol 107: 1233-1239

    Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schroeder HE, Gollasch S, Moore A, Tabe LM, Craig S, Hardie DC, Chrispeels MJ, Spencer D, Higgins TJV (1995). Bean [alpha]-amylase inhiconfers resistance to the pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.). Plant Physiol 107:1233–1239

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994) Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Bio/Technol 12:793–796

    CAS  Google Scholar 

  • Sharma AK, Sharma MK (2009) Plants as bioreactors: recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    CAS  PubMed  Google Scholar 

  • Shelton AM (2010) The long road to commercialization of Bt brinjal (eggplant) in India. Crop Prot 29:412–414

    Google Scholar 

  • Shelton AM (2012) Genetically engineered vegetables expressing proteins from Bacillus thuringiensis for insect resistance. GM crops Food 3:175–183

    PubMed  Google Scholar 

  • Smigocki A, Neal JW Jr, McCanna I, Douglass L (1993) Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene. Plant Mol Biol 23:325–335

    CAS  PubMed  Google Scholar 

  • Smigocki A (1997) In: Carozzi N, Koziel M (eds) Advances in insect control: role of transgenic plants. Taylor and Francis ,pp 225–236

    Google Scholar 

  • Sneh B, Schuster S (1981) Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis Boisd. previously fed on B. thuringiensis-treated leaves. J Invertebrate Path 37:295–303

    Google Scholar 

  • Stefanov I, Ilubaev S, Feher A, Margoczi K, Dudits D (1991) Promoter and genotype dependent transient expression of a reporter gene in plant protoplasts. Acta Biol Hung 42:323–330

    CAS  PubMed  Google Scholar 

  • Stewart JG, Feldman J, LeBlanc DA (1999) Resistance of transgenic potatoes to attack by Epitrix cucumeris (Coleoptera: Chrysomelidae). Canadian Entomol 131:423–431

    Google Scholar 

  • Szabados L, Ratet P, Grunenberg B, de Bruijn FJ (1990) Functional analysis of the Sesbania rostrata leghemoglobin glb3 gene 50-upstream region in transgenic Lotus corniculatus and Nicotiana tabacum. Plant Cell 2:973–986

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Google Scholar 

  • Tojo A, Aizawa K (1983) Dissolution and degradation of Bacillus thuringiensis delta-endotoxin by gut juice protease of the silkworn Bombyx mori. Appl Environ Microbiol 45:576–580

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    CAS  PubMed  Google Scholar 

  • Verdaguer B, de Kochko A, Beachy RN, Fauquet C (1996) Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter. Plant Mol Biol 31:1129–1139

    CAS  PubMed  Google Scholar 

  • Visser RGF, Stolte A, Jacobsen E (1991) Expression of a chimaeric granule bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol 17:691–699

    CAS  PubMed  Google Scholar 

  • Wang J, Oard JH (2003) Rice ubiquitin promoters: deletion analysis and potential usefulness in plant transformation systems. Plant Cell Rep 22:129–134

    CAS  PubMed  Google Scholar 

  • Wang E, Wang R, DeParasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    CAS  PubMed  Google Scholar 

  • Xiang Y, Wong WKR, Ma MC, Wong RSC (2000) Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep 19:251–256

    Google Scholar 

  • Xie Y, Liu Y, Meng M, Chen L, Zhu Z (2003) Isolation and identification of a super strong plant promoter from cotton leaf curl Multan virus. Plant Mol Biol 53:1–14

    CAS  PubMed  Google Scholar 

  • Xu D, McElroy D, Thornburg RW, Wu R (1993) Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol 22:573–588

    CAS  PubMed  Google Scholar 

  • Yamamoto YT, Taylor CG, Acedo GN, Cheng CL, Conkling MA (1991) Characterization of cis-acting sequences regulating root-specific gene expression in tobacco. Plant Cell 3:371–382

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63:532–536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:20504

    Google Scholar 

  • Zhu Q, Song B, Zhang C, Ou Y, Xie C, Liu J (2008) Construction and functional characteristics of tuber-specific and cold-inducible chimeric promoters in potato. Plant Cell Rep 27:47–55

    CAS  PubMed  Google Scholar 

  • Ziegelhoffer T, Will J, Austin-Phillips S (1999) Expression of bacterial cellulase genes in transgenic alfalfa (Medicago sativa L.), potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.). Mol Breed 5:309–318

    CAS  Google Scholar 

  • Zuo J, Chua NH (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ananda Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sreevathsa, R., Solanke, A., Ananda Kumar, P. (2015). Biotechnology for Insect Pest Management in Vegetable Crops. In: Azhakanandam, K., Silverstone, A., Daniell, H., Davey, M. (eds) Recent Advancements in Gene Expression and Enabling Technologies in Crop Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2202-4_10

Download citation

Publish with us

Policies and ethics