Skip to main content
Log in

Transgenic broccoli expressing aBacillus thuringiensis insecticidal crystal protein: Implications for pest resistance management strategies

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We usedAgrobacterium tumefaciens to transform flowering stalk explants of five genotypes of broccoli with a construct containing the neomycin phosphotransferase gene and aBacillus thuringiensis (Bt) gene [CryIA(c) type] optimized for plant expression. Overall transformation efficiency was 6.4%; 181 kanamycin-resistant plants were recovered. Of the 162 kanamycin-resistant plants tested, 112 (69%) caused 100% morality of 1st-instar larvae of aBt-susceptible diamondback moth strain. Southern blots of some resistant transformants confirmed presence of theBt gene. Selected plants that gave 100% mortality of susceptible larvae allowed survival of a strain of diamondback moth that had evolved resistance toBt in the field. F1 hybrids between resistant and susceptible insects did not survive. Analysis of progeny from 26 resistant transgenic lines showed 16 that gave segregation ratios consistent with a single T-DNA integration. Southern analysis was used to verify those plants possessing a single T-DNA integration. Because these transgenic plants kill susceptible larvae and F1 larvae, but serve as a suitable host for resistant ones, they provide an excellent model for tests ofBt resistance management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arumuganathan K, Earle ED: Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9: 229–233 (1991).

    Google Scholar 

  2. Arumuganathan K, Earle ED: Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218 (1991).

    Google Scholar 

  3. Bai YY, Mao HZ, Cao XL, Tang T, Wu D, Chen DD, Li WG, Fu WJ: Transgenic cabbage plants with insect tolerance. In: You CBet al. (eds) Biotechnology in Agriculture, pp. 156–159. Kluwer Academic Publishers, Netherlands (1993).

    Google Scholar 

  4. Bottrell DG, Aguda RM, Gould FL, Theunis W, Demayo CG, Magalit VF: Potential strategies for prolonging the usefulness ofBacillus thuringiensis in engineered rice. Korean J Appl Entomol 31: 247–255 (1992).

    Google Scholar 

  5. Cheng J, Bolyard MG, Saxena RC, Sticklen M: Production of insect resistant potato by genetic transformation with a delta-endotoxin fromBacillus thuringiensis var.kurstaki. Plant Sci 81: 83–91 (1992).

    Google Scholar 

  6. Church GM, Gilbert W: Genomic sequencing. Proc Natl Acad Sci USA 81: 1991–1995 (1984).

    Google Scholar 

  7. Dean C, Jones J, Favreau M, Dunsmuir P, Bedbrook J: Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl Acids Res 16: 9267–9283 (1988).

    Google Scholar 

  8. Ferro DN: Potential for resistance toBacillus thuringiensis: Colorado potato beetle (Coleoptera: Chysomelidae): a model system. Am Entomol 39: 38–44 (1993).

    Google Scholar 

  9. Fromm M, Armstrong C, Blasingame A, Brown S, Duncan D, Deboer D, Hairston B, Howe A, McCaul S, Neher M, Pajeau M, Parker G, Pershing J, Petersen B, Santino C, Sanders P, Sato S, Sims S, Thorton T: Production of insect resistant corn. J Biol Chem (Suppl. 18A): 77 (1994).

    Google Scholar 

  10. Fry J, Barnason A, Horsch RB: Transformation ofBrassica napus withAgrobacterium tumefaciens based vectors. Plant Cell Rep 6: 321–325 (1987).

    Google Scholar 

  11. Fuchs RL, MacIntosh SC, Dean DA, Greenplate JT, Perlak FJ, Pershing JC, Marrone PG, Fischhoff DA: Quantification ofBacillus thuringiensis insect control protein as expressed in transgenic plants. In: Hickle LA, Fitch WL (eds) Analytical Chemistry ofBacillus thuringiensis, pp. 105–113. American Chemical Society, Washington, DC (1990).

    Google Scholar 

  12. Fujimoto H, Itoh K, Yamamoto M, Kyozuka J, Shimamoto K: Insect resistant rice generated by introduction of a modified-endotoxin gene ofBacillus thuringiensis. Bio/technology 11: 1151–1155 (1993).

    Google Scholar 

  13. Gallun RL, Khush GS: Genetic factors affecting the expression and stability of resistance. In: Maxwell FG, Jennings PR (eds) Breeding Plants Resistant to Insects, pp. 64–85. Wiley, New York (1980).

    Google Scholar 

  14. Gamborg OL, Miller RA, Ojima K: Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158 (1968).

    Google Scholar 

  15. Gibbons A: Moths take the field against biopesticides. Science 254: 646 (1991).

    Google Scholar 

  16. Gould F: Simulation models for predicting durability of insect-resistant germplasm: a deterministic diploid, two-locus model. Envir Entomol 15: 1–10 (1986).

    Google Scholar 

  17. Gould F: Genetic engineering, integrated pest management and the evolution of pests. Trends Biotechnol 6: 15–18 (1990).

    Google Scholar 

  18. Hama H, Suzuki K, Tanaka H: Inheritance and stability of resistance toBacillus thuringiensis formulations of the diamondback moth,Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl Entomol Zool 27: 355–362 (1992).

    Google Scholar 

  19. Hansen WD: Minimum family sizes for genetic experiments. Agron J 51: 711–715 (1959).

    Google Scholar 

  20. Höfte H, Whiteley HR: Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol Rev 53: 242–255 (1989).

    Google Scholar 

  21. Kirsch K, Schmutterer H: Low efficacy of aBacillus thuringiensis (Berl.) formulation in controlling the diamondback moth,Plutella xylostella (L.), in the Philippines. J Appl Entomol 105: 249–255 (1988).

    Google Scholar 

  22. Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV: Field performance of elite transgenic maize plants expressing an insecticidal protein derived fromBacillus thuringiensis. Bio/technology 11: 194–200 (1993).

    Google Scholar 

  23. Mallet J, Porter P: Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc R Soc Lond B 250: 165–169 (1992).

    Google Scholar 

  24. Matzke M, Matzke AJM: Genomic imprinting in plants: parental effects andtrans-inactivation phenomena. In: Briggs WR, Jones RL, Walbot V (eds) Annu Rev Plant Physiol Plant Mol Biol 44: 53–76 (1993).

    Google Scholar 

  25. McGaughey WH, Beeman RW: Resistance toBacillus thuringiensis in colonies of Indian meal moth and almond moth (Lepidoptera: Pyralidae). J Econ Entomol 81: 28–33 (1990).

    Google Scholar 

  26. McGaughey WH, Whalon ME: Managing insect resistance toBacillus thuringiensis toxins. Science 258: 1451–1455 (1992).

    Google Scholar 

  27. Murashige T, Skoog F: A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  28. Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA: Insect resistant cotton plants. Bio/technology 8: 939–943 (1990).

    Google Scholar 

  29. Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci USA 88: 3324–3328 (1991).

    Google Scholar 

  30. Roush RT: Managing pests and their resistance toBacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol Sci Technol 4: 501–516 (1994).

    Google Scholar 

  31. Rowe GE, Margaritis A: Bioprocess developments in the production of bioinsecticides byBacillus thuringiensis. CRC Crit Rev Biotechnol 6: 87–127 (1987).

    Google Scholar 

  32. Shelton AM, Cooley RJ, Kroening MK, Wilsey WT, Eigenbrode SD: Comparative analysis of two rearing procedures for diamondback moth,Plutella xylostella (Lepidoptera: Plutellidae). J Entomol Sci 26: 17–26 (1991).

    Google Scholar 

  33. Shelton AM, Robertson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WK, Cooley RJ: Resistance of diamondback moth toBacillus thuringiensis subspecies in the field. J Econ Entomol 86: 697–705 (1993).

    Google Scholar 

  34. Shure W, Wessler S, Federoff N: Molecular identification and isolation of theWaxy locus in maize. Cell 35: 235–242 (1983).

    Google Scholar 

  35. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503 (1975).

    Google Scholar 

  36. Stone TB, Sims SR, Marrone PG: Selection of tobacco budworm for resistance to a genetically engineeredPseudomonas fluorescens containing the delta-endotoxin ofBacillus thuringiensis subsp.kurstaki. J Invert Path 53: 228–234 (1989).

    Google Scholar 

  37. Sullivan J, Lagrimini LM: Transformation ofLiquidambar stryraciflua usingAgrobacterium tumefaciens. Plant Cell Rep 12: 303–306 (1993).

    Google Scholar 

  38. Tabashnik BE: Evolution of resistance toBacillus thuringiensis. Ann Rev Entomol 39: 47–79 (1994).

    Google Scholar 

  39. Tabashnik BE: Delaying insect adaptation to transgenic crops: seed mixtures and refugia reconsidered. Proc R Soc Lond Ser. B 255: 7–12 (1994).

    Google Scholar 

  40. Tabashnik BE, Cushing N, Finson N, Johnson MW: Field development of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 83: 1671–1676 (1990).

    Google Scholar 

  41. Tabashnik BE, Finson N, Johnson MW: Managing resistance toBacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 84: 49–55 (1991).

    Google Scholar 

  42. Tabashnik BE, Schwartz JM, Finson N, Johnson MW: Inheritance of resistance toBacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 85: 1046–1055 (1992).

    Google Scholar 

  43. Talekar NS, Shelton AM: Biology, ecology and management of the diamondback moth. Annu Rev Entomol 38: 275–301 (1993).

    Google Scholar 

  44. Toriyama K: Transformation ofBrassica species with self-incompatibility gene. In: Oono K, Hirabayashi T, Kikuchi S, Handa H, Kajiwara K (eds) Plant Tissue Culture and Gene Manipulation for Breeding and the Formation of Phytochemicals, pp. 165–171. NIAR, Japan (1992).

    Google Scholar 

  45. Vaeck M, Reynaerts A, Höfte H, Jansens S, De Beuckeleen M, Dean C, Zabeau M, Van Montagu M, Leemans J: Transgenic plants protected from insect attack. Nature 328: 33–37 (1987).

    Google Scholar 

  46. Weide R, Koornneef M, Zabel P: A simple, nondestructive spraying assay for the detection of an active kanamycin resistance gene in transgenic tomato plants. Theor Appl Genet 78: 169–172 (1989).

    Google Scholar 

  47. Whalon ME, Miller DL, Hollingworth RM, Grafius EJ, Miller JR: Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant toBacillus thuringiensis. J Econ Entomol 86: 226–233 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, T.D., Roush, R.T., Tang, J.D. et al. Transgenic broccoli expressing aBacillus thuringiensis insecticidal crystal protein: Implications for pest resistance management strategies. Mol Breeding 1, 309–317 (1995). https://doi.org/10.1007/BF01248408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248408

Key words

Navigation