Skip to main content

Linkage Mapping

  • Chapter
Sorghum Molecular Breeding

Abstract

The past three decades have seen the development and use of DNA marker systems in linkage mapping of genes/QTLs for economic traits in almost all crop plants. Mapping populations of different types and sizes, DNA marker systems, and genotyping technologies were developed along with advances in statistical analyses for linkage mapping. The construction of genetic maps in sorghum started during 1990s using RFLP markers. Early genetic maps were based on F2 populations and lacked resolution due to less number of markers and smaller population size. Later maps were developed with recombinant inbred line populations with more number of markers and population size. New classes of PCR-based markers like SSRs, AFLPs were used in the construction of maps. The availability of whole sorghum genome sequence resulted in the development of thousands of SSRs and identification of millions of SNPs leading to the construction of high-density linkage maps. Saturated genetic maps contribute substantially to the fine mapping and positional cloning of important genes and offer a tool for gene discovery, allele mining, etc. Linkage maps covering whole of sorghum genome were developed, and comprehensive maps with molecular, cytological, and physical elements established integrating inputs from several mapping efforts. Linkage maps are useful for elucidation of complex biological processes directly related to superior agronomic performance and in identifying gene/QTL marker associations for gene pyramiding, marker-assisted breeding of crop plants including sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genom 2008:574927

    Google Scholar 

  • Agrama H, Widle G, Reese J, Campbell L, Tuinstra M (2002) Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378

    Article  CAS  PubMed  Google Scholar 

  • Alam MM, Mace ES, van Oosterom EJ, Cruickshank A, Hunt CH, Hammer GL, Jordan DR (2014) QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. Theor Appl Genet 127:2253–2266

    Article  CAS  PubMed  Google Scholar 

  • Aruna C, Bhagwat VR, Madhusudhana R, Vittal S, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630

    Article  CAS  PubMed  Google Scholar 

  • Bar-Hen A, Charcosset A, Bourgoin M, Guiard J (1995) Relationship between genetic markers and morphological traits in a maize inbred lines collection. Euphytica 84:145–154

    Article  Google Scholar 

  • Barua U, Chalmers K, Hackett C, Thomas W, Powell W, Waugh R (1993) Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity 71:177–184

    Article  CAS  PubMed  Google Scholar 

  • Basten C, Weir B, Zeng Z (2003) WinQTL Cartographer. v. 2.0. Dept. of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Beckmann J, Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor Appl Genet 67:35–43

    Article  CAS  PubMed  Google Scholar 

  • Beer SC, Siripoonwiwat W, O’donoughue LS, Souza E, Matthews D, Sorrells ME (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages. J Agric Genom 3:1–16

    Google Scholar 

  • Bennetzen JL, Subramanian V, Xu J, Salimath SS, Subramanian S, Bhattramakki D, Hart GE (2001) A framework genetic map of sorghum containing RFLP, SSR and morphological markers. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Springer, Netherlands, pp 347–355

    Google Scholar 

  • Berhan AM, Hulbert S, Butler L, Bennetzen J (1993) Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor Appl Genet 86:598–604

    Article  CAS  PubMed  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  CAS  PubMed  Google Scholar 

  • Bian YL, Yazaki S, Inoue M, Cai HW (2006) QTLs for sugar content of stalk in sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China 5:736–744

    Article  CAS  Google Scholar 

  • Binelli G, Gianfranceschi L, Pe M, Taramino G, Busso C, Stenhouse J, Ottaviano E (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Article  CAS  PubMed  Google Scholar 

  • Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Hopkins M, Mitchell S, Senior M, Wang T, Duncan R, Gonzalez-Candelas F, Kresovich S (1996) Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 93:190–198

    Article  CAS  PubMed  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  PubMed  CAS  Google Scholar 

  • Chittenden L, Schertz K, Lin Y, Wing R, Paterson A (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  PubMed  Google Scholar 

  • Collard B, Mace E, McPHAIL M, Wenzl P, Cakir M, Fox G, Poulsen D, Jordan D (2009) How accurate are the marker orders in crop linkage maps generated from large marker datasets? Crop Pasture Sci 60:362–372

    Article  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  CAS  PubMed  Google Scholar 

  • de Vilmorin P, Bateson W (1911) A case of gametic coupling in Pisum. Proc R Soc Lond B Biol Sci 84:9–11

    Article  Google Scholar 

  • Deu M, Ratnadass A, Hamada M, Noyer J, Diabate M, Chantereau J (2005) Quantitative trait loci for head-bug resistance in sorghum. Afr J Biotechnol 4:247–250

    CAS  Google Scholar 

  • Duan Y, Qian J, Sun Y, Yi Z, Yan M (2009) Construction of methylation linkage map based on MSAP and SSR markers in Sorghum bicolor (L.). IUBMB Life 61:663–669

    Article  CAS  PubMed  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’hont A, Paulet F, Bouet A, Lanaud C, Glaszmann J, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Echt C, Knapp S, Liu B (1992) Genome mapping with non-inbred crosses using GMendel 2.0. Maize Genet Coop Newsl 66:27–29

    Google Scholar 

  • Edwards M, Stuber C, Wendel J (1987) Molecular-marker-facilitated investigations of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed Central  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GbS) approach for high diversity species. PLoS One 6:e19379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eujayl I, Sledge M, Wang L, May G, Chekhovskiy K, Zwonitzer J, Mian M (2004) Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422

    Article  CAS  PubMed  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter-and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Fernandez MGS, Hamblin MT, Li L, Rooney WL, Tuinstra MR, Kresovich S (2008) Quantitative trait loci analysis of endosperm color and carotenoid content in sorghum grain. Crop Sci 48:1732–1743

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM IV, Iv B (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Godwin ID, Aitken EA, Smith LW (1997) Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524–1528

    Article  CAS  PubMed  Google Scholar 

  • Goulden C (1939) Problems in plant selection. In: Proceedings of 7th international genetics congress. Edinburgh Cambridge University Press, Cambridge, UK, pp 132–133

    Google Scholar 

  • Guan YA, Wang HL, Qin L, Zhang HW, Yang YB, Gao FJ, Li RY, Wang HG (2011) QTL mapping of bio-energy related traits in sorghum. Euphytica 182:431–440

    Article  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    CAS  PubMed  Google Scholar 

  • Hearne CM, Ghosh S, Todd JA (1992) Microsatellites for linkage analysis of genetic traits. Trends Genet 8:288–294

    Article  CAS  PubMed  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A 87:4251–4255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jannink J-L, Bink MC, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. InTech. ISBN 978-953-51-1090-3

    Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Edwards K, Castaglione S, Winfield M, Sala F, Van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Kao CH, Zeng Z-B, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Klein R, Rodriguez-Herrera R, Schlueter J, Klein P, Yu Z, Rooney W (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Knoll J, Gunaratna N, Ejeta G (2008) QTL analysis of early-season cold tolerance in sorghum. Theor Appl Genet 116:577–587

    Article  PubMed  Google Scholar 

  • Kong L, Dong J, Hart G (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Kong W, Jin H, Franks CD et al (2013) Genetic analysis of recombinant inbred lines for Sorghum bicolor × Sorghum propinquum. G3 (Bethesda) 3:101–108

    Article  CAS  Google Scholar 

  • Lamprecht H (1948) The variation of linkage and the course of crossing over. Agric Hort Genet 6:10–48

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li JZ, Börner PDA (2004) Mapping of new microsatellite markers and molecular identification of quantitative trait locus (QTL) for agronomically important traits in barley. Ph.D. dissertation, Der Landwirtschaftlichen Fakultat der Martin-Luther-Universitat Halle-Wittenberg. http://sundoc.bibliothek.uni-halle.de/diss-online/04/04H319/prom.pdf

  • Li M, Yuyama N, Luo L, Hirata M, Cai H (2009) In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Mol Breed 24:41–47

    Article  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1993a) Constructing genetic linkage maps with MAPMAKER/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd edn

    Google Scholar 

  • Lincoln S, Daly M, Lander E (1993b) Mapping genes controlling quantitative traits using MAPMAKER/QTL. Version 1.1. Whitehead Institute for Biomedical Research Technical Report, 2nd edn

    Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Kearsey M (1989) Maximum likelihood estimation of linkage between a marker gene and a quantitative locus. Heredity 63:401–408

    Article  PubMed  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  CAS  PubMed  Google Scholar 

  • Mace E, Xia L, Jordan D, Halloran K, Parh D, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9:26

    Article  CAS  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Mackay I, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • McIntyre CL, Casu R, Drenth J, Knight D, Whan V, Croft B, Jordan D, Manners J (2005) Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 48:391–400

    Article  CAS  PubMed  Google Scholar 

  • Meer JM, Cudmore JRH, Manly K (2004) MapManager/QTX: software for complex trait analysis. http://www.mapmanager.org/mmQTX.html

  • Mendel G (1865) Experiments in plant hybridization (Verhandlungen des naturforschenden Vereins Brünn). Available online: www.mendelweb.org/Mendel.html. Accessed 16 May 2015

  • Menz M, Klein R, Mullet J, Obert J, Unruh N, Klein P (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP®, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  CAS  PubMed  Google Scholar 

  • Moens P, Wu Y, Huang Y (2006) An SSR genetic map of Sorghum bicolor (L.) Moench and its comparison to a published genetic map. Genome 50:84–89

    Article  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain non-structural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Nagaoka T, Ogihara Y (1997) Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor Appl Genet 94:597–602

    Article  CAS  Google Scholar 

  • Nagaraja Reddy R, Madhusudhana R, Mohan SM, Chakravarthi D, Seetharama N (2012) Characterization, development and mapping of Unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]. Mol Breed 29:543–564

    Article  CAS  Google Scholar 

  • Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Seetharama N, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics 15:909

    Article  Google Scholar 

  • Nagaraju J, Kathirvel M, Kumar RR, Siddiq E, Hasnain SE (2002) Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence-based ISSR-PCR and SSR markers. Proc Natl Acad Sci U S A 99:5836–5841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Palmer CED, Keller WA (2005) Overview of haploidy. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Springer, Berlin, pp 3–9

    Google Scholar 

  • Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-Ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  CAS  PubMed  Google Scholar 

  • Parida SK, Kumar KAR, Dalal V, Singh NK, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Schertz K, Cartinhour S, Hart G (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  PubMed  Google Scholar 

  • Pereira M, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243

    Article  CAS  PubMed  Google Scholar 

  • Pratt LH, Liang C, Shah M, Sun F, Wang H, Gingle AR, Paterson AH, Wing R, Dean R, Klein R (2005) Sorghum expressed sequence tags identify signature genes for drought, pathogenesis, and skotomorphogenesis from a milestone set of 16,801 unique transcripts. Plant Physiol 139:869–884

    Article  PubMed Central  PubMed  Google Scholar 

  • Rafalski JA (2002) Novel genetic mapping tools in plants: SNPs and LD-based approaches. Plant Sci 162:329–333

    Article  CAS  Google Scholar 

  • Rafalski J, Tingey S (1993) RFLP map of soybean (Glycine max) 2 N = 40. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 149–156

    Google Scholar 

  • Ragab R, Dronavalli S, Maroof MS, Yu Y (1994) Construction of a sorghum RFLP linkage map using sorghum and maize DNA probes. Genome 37:590–594

    Article  CAS  PubMed  Google Scholar 

  • Ramu P, Kassahun B, Senthilvel S, Kumar CA, Jayashree B, Folkertsma R, Reddy LA, Kuruvinashetti M, Haussmann B, Hash C (2009) Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map. Theor Appl Genet 119:1193–1204

    Article  CAS  PubMed  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Ronin Y, Kirzhner V, Korol A (1995) Linkage between loci of quantitative traits and marker loci: multi-trait analysis with a single marker. Theor Appl Genet 90:776–786

    Article  CAS  PubMed  Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP et al (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119:1425–1439

    Article  CAS  PubMed  Google Scholar 

  • Shiringani AL, Friedt W (2011) QTL for fibre-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011

    Article  PubMed  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    Article  CAS  PubMed  Google Scholar 

  • Soller M, Brody T, Genizi A (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, Wilson WA (1997) Direct classification and selection of superior alleles for crop improvement. Crop Sci 37:691–697

    Article  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009a) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  CAS  PubMed  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009b) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) JoinMap: a computer package to construct integrated genetic linkage maps. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL mapping population. Genome 43:240–249

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Yonemaru JI, Kaidai H, Kasuga S (2012) Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica 187:411–420

    Article  Google Scholar 

  • Tanksley S, Young N, Paterson A, Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    Article  CAS  Google Scholar 

  • Tao Y, Jordan D, Henzell R, McIntyre C (1998) Identification of genomic regions for rust resistance in sorghum. Euphytica 103:287–292

    Article  CAS  Google Scholar 

  • Tao Y, Henzell R, Jordan D, Butler D, Kelly A, McIntyre C (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Genet 107:116–122

    CAS  PubMed  Google Scholar 

  • Taramino G, Tarchini R, Ferrario S, Lee M (1997) Characterization and mapping of simple sequence repeats (SSRs) in Sorghum bicolor. Theor Appl Genet 95:66–72

    Article  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbroug PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    Article  CAS  Google Scholar 

  • Utz F, Melchinger A (2007) PLABQTL: a computer program to map QTL. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart

    Google Scholar 

  • van Ooijen J (2011) MapQTL 6: software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma B. V., Wageningen

    Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotech 27:522–530

    Article  CAS  Google Scholar 

  • Virk PS, Ford-Lloyd BV, Jackson MT, Pooni HS, Clemeno TP, Newbury HJ (1996) Predicting quantitative variation within rice germplasm using molecular markers. Heredity 76:296–304

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van De Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu YQ, Huang Y, Porter DR, Tauer CG, Hollaway L (2007) Identification of a major quantitative trait locus conditioning resistance to greenbug biotype E in sorghum PI 550610 using simple sequence repeat markers. J Econ Entomol 100:1672–1678

    Article  CAS  PubMed  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CABI, Wallingford/Cambridge, MA. ISBN 9781845933920

    Book  Google Scholar 

  • Xu GW, Magill C, Schertz K, Hart G (1994) A RFLP linkage map of Sorghum bicolor (L.) Moench. Theor Appl Genet 89:139–145

    CAS  PubMed  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Wang J, Crouch J (2008) Selective genotyping and pooled DNA analysis: an innovative use of an old concept. In: Recognizing past achievement, meeting future needs. Proceedings of the 5th International Crop Science Congress, 14–18 Apr 2008, International Crop Science Society, Jeju, The Republic of Korea

    Google Scholar 

  • Yang W, de Oliveira AC, Godwin I, Schertz K, Bennetzen JL (1996) Comparison of DNA marker technologies in characterizing plant genome diversity: variability in Chinese sorghums. Crop Sci 36:1669–1676

    Article  Google Scholar 

  • Yonemaru J, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu JK, La Rota M, Kantety R, Sorrells M (2004) EST derived SSR markers for comparative mapping in wheat and rice. Mol Genet Genomics 271:742–751

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res Camb 74:279–289

    Article  CAS  Google Scholar 

  • Zhang Z, Btadbury PJ, Kroon DE, Casstevens TM, Buckler ES (2006) TASSEL 2.0: a software package for association and diversity analysis in plants and animals. Plant and Animal Genomes XIV conference, Poster P956/CP012, San Diego

    Google Scholar 

  • Zhao H, Fernando R, Dekkers J (2007) Effects of population structure on power and precision of regression-based linkage disequilibrium mapping of QTL. J Anim Sci 85:63

    Article  CAS  Google Scholar 

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Madhusudhana, R. (2015). Linkage Mapping. In: Madhusudhana, R., Rajendrakumar, P., Patil, J. (eds) Sorghum Molecular Breeding. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2422-8_3

Download citation

Publish with us

Policies and ethics