Skip to main content
Log in

Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The hybrid vigor typical of F1 cultivars is used to boost biomass production of sorghum (Sorghum bicolor (L.) Moench). The high dry-matter yielding F1 cultivar Kazetachi uniquely shows extremely late flowering and a long culm, and is greatly different from its parents. We investigated the genetic mechanisms underlying these phenotypes by quantitative trait locus (QTL) analysis of recombinant inbred lines derived from a male-fertile line and a restorer line and grown in 3 years. QTL analysis for six traits (days-to-heading, culm length, culm width, culm number, panicle length, panicle number) revealed that the unique phenotypes of the F1 plants were controlled by the genetic combination of 12 or more QTLs detected in at least 2 years. Two putative QTLs for days-to-heading (qDH1 on SBI-01 and qDH6 on SBI-06) would strongly affect the other phenotypes because of their co-localization with QTLs for other traits, as supported by significant phenotypic correlations. These QTLs would be useful for understanding the association of plant type with biomass production in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: a review. Afr J Agric Res 4:772–780

    Google Scholar 

  • Bartel AT (1949) Hybrid vigor in sorghums. Agron J 41:147–152

    Article  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched 1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Kebrom TH, Brutnell TP, Hays DB, Finlayson SA (2010) Vegetative axillary bud dormancy induced by shade and defoliation signals in the grasses. Plant Signal Behav 5:317–319

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE et al (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Mullet JE, Jordan DR, Miller FR, Rooney WL, Menz MA, Franks CD, Klein PE (2008) The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop Sci 48:S12–S26

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2010) Location of major effect genes in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 121:1339–1356

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A et al (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  PubMed  CAS  Google Scholar 

  • Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE (2011) Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci USA 108(39):16469–16474. doi:10.1073/pnas.1106212108

    Article  PubMed  CAS  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Quinby JR (1966) Fourth maturity gene locus in sorghum. Crop Sci 6:516–518

    Article  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. In: Norman AG (ed) Advances in Agronomy, vol 19. Academic Press, New York, pp 267–305

    Google Scholar 

  • Quinby JR, Karper R (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Rami J-F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F et al (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400

    Article  Google Scholar 

  • Shiringani A, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    Article  PubMed  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Frederiksen RA (2000) Sorghum: origin, history, technology and production. Wiley, New York

    Google Scholar 

  • Srinivasa Rao P, Rao SS, Seetharama N, Umakanth AV, Sanjana Reddy P, Reddy BVS, Gowda CLL (2009) Sweet sorghum for biofuel and strategies for its improvement. ICRISAT, Information Bulletin No. 77: Patancheru, Andhra Pradesh, India

  • Tarumoto I, Kasuga S, Kaidai H, Sawai A, Hakuzan R, Minami T et al (2000) Analysis of genetic variability in flowering habit and related genes in sorghum, Sorghum bicolor (L.) Moench. Ikushugaku kenkyu 2:59–65 (in Japanese with English summary)

    Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Wang ML, Zhu C, Barkley NA, Chen Z, Erpelding JE, Murray SC et al (2009) Genetic diversity and population structure analysis of accessions in the US historic sweet sorghum collection. Theor Appl Genet 120:13–23

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2011) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State Univ., Raleigh, NC, USA. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Yonemaru J-I, Ando T, Mizubayashi T, Kasuga S, Matsumoto T, Yano M (2009) Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum (Sorghum bicolor (L.) Moench). DNA Res 16:187–193

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Rural Biomass Research Project, BCD-1223; Genomics for Agricultural Innovation, SOR-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Yonemaru.

Additional information

Tomoyuki Takai and Jun-ichi Yonemaru contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 382 kb)

Supplementary material 2 (XLS 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takai, T., Yonemaru, Ji., Kaidai, H. et al. Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica 187, 411–420 (2012). https://doi.org/10.1007/s10681-012-0727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0727-8

Keywords

Navigation