Skip to main content
Log in

Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McItyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Al-Janabi S, McClelland M, Petersen C, Sobral B (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae: Saccharinae. Theor Appl Genet 88:933–944

    Article  CAS  Google Scholar 

  • Assar HA, Uptmoor R, Abdelmula AA, Salih M, Ordon F, Friedt W (2005) Genetic variation in sorghum germplasm from Sudan, ICRISAT, and USA assessed by simple sequence repeats (SSRs). Crop Sci 45:1636–1644

    Article  CAS  Google Scholar 

  • Aydin S, Rooney WL, Miller FR (1997) Identification and characterization of the Ma5 and Ma6 maturity loci in Sorghum. In: Proceeding of the international conference on genetic improvement of sorghum and pearl millet, 22–27 Sep 1996, Lubbock, USA, INTSORMIL and ICRISAT, pp 641–642

  • Berg ES, Olaisen B (1994) Hybrid PCR sequencing-sequencing of PCR products using a universal primer. Biotechniques 17:896–901

    PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra A, Hart G (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Boivin K, Deu M, Rami J-F, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Casady AJ (1965) Effect of a single height (Dw) gene of sorghum on grain yield, grain yield components, and test weight. Crop Sci 5:385–389

    Article  Google Scholar 

  • Chantereau J, Trouche G, Rami J-F, Deu M, Barro C, Grivet L (2004) RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 120:183–194

    Article  Google Scholar 

  • Dean RE, Dahlberg JA, Hopkins MS, Mutchell SE, Kresovich S (1999) Genetic redundancy and diversity among ‘Orange’ accessions in the U.S. National sorghum collection assessed with simple sequence repeats (SSR) markers. Crop Sci 39:1215–1221

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Fehr WR (1987) Principles of cultivar development. MacMillan, New York

    Google Scholar 

  • Feltus FA, Hart SE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Graham D, Lessmann KJ (1966) Effect of height on yield and yield components of two isogenic lines of Sorghum vulgare Pers. Crop Sci 6:372–374

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploidy and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Guimarães CT, Sills GR, Sobral WS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci 94:14261–14266

    Article  PubMed  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kühnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  PubMed  CAS  Google Scholar 

  • Hausmann BIG, Mahalakshini V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Google Scholar 

  • Henderson SK, Fenn CA, Domijan JD (1998) Determination of sugar content in commercial beverages by density. A novel experiment for general chemistry courses. J Chem Educ 75:1122–1123

    Article  CAS  Google Scholar 

  • Holland JB (2001) Epistasis and plant breeding. Plant Breed Rev 21:27–92

    CAS  Google Scholar 

  • Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL (2004) Markers associated with stalk number and suckering in sugarcane collocate with tillering and rhizomateousness QTLs. Genome 47:988–993

    Article  PubMed  CAS  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Kim J-S, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Dong J, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Laurie DA (1997) Comparative genetics of flowering time. Plant Mol Biol 35:167–177

    Article  PubMed  CAS  Google Scholar 

  • Leon J, Becker HC (1988) Repeatability of some statistical measures of phenotypic stability—correlation between single year results and multi years results. Plant Breed 100:137–142

    Article  Google Scholar 

  • Lingle SE (1997) Seasonal internode development and sugar metabolism in sugarcane. Crop Sci 37:1222–1227

    Article  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS® for mixed models, 2nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DarT) markers. BMC Plant Biol 9:13. doi:10.1186/1471-2229-9-13

    Article  PubMed  Google Scholar 

  • Milligan SB, Gravois KA, Vischoff KP, Martin FA (1990) Crop effects on genetic relationships among sugarcane. Crop Sci 30:927–931

    Article  Google Scholar 

  • Ming R, Liu S-C, Lin Y-R, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrels ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely-related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Wang Y-W, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchel SE, Kresovich S (2008) Genetic improvement of sorghum as biofuel feedstock I: QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Natoli A, Gorni C, Chegdani F, Ajmone Marsan P, Colombi C, Lorenzoni C, Marocco A (2002) Identification of QTLs associated with sweet sorghum quality. Maydica 47:311–322

    Google Scholar 

  • Parth DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu S-C, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 296:1714–1718

    Article  Google Scholar 

  • Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: genomics of model cereals. Genome Res 15:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Purcell S, Sham PC (2004) Epistasis in quantitative trait locus linkage analysis: interaction or main effects? Behav Genet 34:143–152

    Article  PubMed  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. In: Norman A (ed) Advances in agronomy XIX. Academic Press, New York, pp 267–305

    Chapter  Google Scholar 

  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Rae AM, Street NR, Robinson KM, Harris N, Taylor G (2009) Five QTL hotspots for yield in short rotation coppice bioenergy poplar: the poplar biomass loci. BMC Plant Biol 9:23. doi:10.1186/1471-2229-9-23

    Article  PubMed  Google Scholar 

  • Rami J-F, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blancard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological, and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Robertson MJ, Muchow RC, Wood AW, Campbell JA (1996) Accumulation of reducing sugars by sugarcane: effects of crop age, nitrogen supply and cultivar. Field Crop Res 49:39–50

    Article  Google Scholar 

  • Routman EJ, Cheverud JM (1997) Gene effects on a quantitative trait: two locus epistatic effects measured at microsatellite markers and at estimated QTL. Evolution 51:1654–1662

    Article  Google Scholar 

  • Rygulla W, Snowdon RJ, Eynck C, Koopmann B, van Tiedemann A, Lühs W, Friedt W (2007) Broadening the genetic basis of Verticillium longisporum resistance in Brassica napus by interspecific hybridisation. Phytopathology 97:1391–1396

    Article  PubMed  CAS  Google Scholar 

  • Schloss SJ, Mitchell SE, White GM, Kukatla R, Bowers JE, Paterson AH, Kresovich S (2002) Characterization of RFLP probe sequences for gene discovery and SSR development in Sorghum bicolor (L.) Moench. Theor Appl Genet 105:912–920

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Mohali SM, Reddy RN, Madhusudhana R, Balakrishna D, Venkatesh BB, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using comparative genomic approach with rice. Theor Appl Genet 117:703–717

    Article  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009a) Exploration and mapping of microsatellite markers from substracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009b) Identification of quantitative trait loci for agronomicaly important traits and their association with genic-microsatelites markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszekwski JL, Mackay TFC, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1152

    PubMed  CAS  Google Scholar 

  • Uptmoor R, Wenzel WG, Friedt W, Donalson G, Ayisi K, Ordon F (2003) Comparative analysis on the genetic relatedness of Sorghum bicolor accessions from southern Africa by RAPDs, AFLPs and SSRs. Theor Appl Genet 106:1316–1325

    PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1994) Comparison of different approaches to interval mapping of quantitative trait loci. In: van Ooijen JW, Jansen J (eds) Biometrics in plant breeding: applications of molecular markers. Wageningen, The Netherlands, pp 195–204

  • Viola K, Davies HV (1992) A microplate reader assay for rapid enzymatic quantification of sugars in potato tubers. Potato Res 35:55–58

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 21:4407–4414

    Article  Google Scholar 

  • Whitlock MC, Phillips PC, Moore BG, Tonsor SJ (1995) Multiple fitness peaks and epistasis. Ann Rev Ecol Syst 26:601–629

    Article  Google Scholar 

  • Xu XY, Bai GH, Carver BF, Shaner GE (2005) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251

    Article  PubMed  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yun-Long B, Seiji Y, Maiko I, Hong-Wei C (2006) QTLs for sugar content of stalk and sweet sorghum (Sorghum bicolor L. Moench). Agric Sci China 5:736–744

    Google Scholar 

  • Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res 111:55–64

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Willy Wenzel, Potchefstroom (South Africa), for providing the RIL population his generous advice, helpful stimulation and continuous support. Excellent technical assistance of Mario Tolksdorf, Markus Kollmer and Malte Luh is kindly acknowledged. This work has been primarily supported by Deutscher Akademischer Austauschdienst (DAAD), Bonn, Agricultural Research Council (ARC) and National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friedt.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiringani, A.L., Frisch, M. & Friedt, W. Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121, 323–336 (2010). https://doi.org/10.1007/s00122-010-1312-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1312-y

Keywords

Navigation