Skip to main content
Log in

A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The first “complete” genetic linkage map of Sorghum section Sorghum is described, comprised of ten linkage groups putatively corresponding to the ten gametic chromosomes of S. bicolor and S. propinquum. The map includes 276 RFLP loci, predominately detected by PstI-digested S. bicolor genomic probes, segregating in 56 F2 progeny of a cross between S. bicolor and S. propinquum. Although prior cytological evidence suggests that the genomes of these species are largely homosequential, a high level of molecular divergence is evidenced by the abundant RFLP and RAPD polymorphisms, the marked deviations from Mendelian segregation in many regions of the genome, and several species-specific DNA probes. The remarkable level of DNA polymorphism between these species will facilitate development of a high-density genetic map. Further, the high level of DNA polymorphism permitted mapping of multiple loci for 21 (8.2%) DNA probes. Linkage relationships among eight (38%) of these probes suggest ancestral duplication of three genomic regions. Mapping of 13 maize genomic clones in this cross was consistent with prior results. Mapping of heterologous cDNAs from rice and oat suggests that it may be feasible to extend comparative mapping to these distantly-related species, and to ultimately generate a detailed description of chromosome rearrangements among cultivated Gramineae. Limited investigation of a small number of RFLPs showed several alleles common to S. bicolor and S. Halepense (“johnson-grass”), but few alleles common to S. propinquum and S. halepense, raising questions about the origin of S. halepense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agricultural Statistics Board (1990) Annual crop summary. NASS, USDA

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Bennett HW, Merwine NC (1966) Meiotic behavior of a Hodo Sorgo × johnsongrass hybrid. Crop Sci 6:127–131

    Google Scholar 

  • Binelli G, Gianfranceschi L, Pe ME, Taramino G, Busso C, Stenhouse J, Ottaviano E (1992) Similarity of maize and sorghum genomes as revealed by maize RFLP probes. Theor Appl Genet 84:10–16

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    Google Scholar 

  • Brown MS (1943) Haploid plants in sorghum. J Hered 34:163–166

    Google Scholar 

  • Celarier RP (1958) Cytotaxonomic notes on the subsection Halepense of the genus Sorghum. Bull Torrey Bot Club 85:49–62

    Google Scholar 

  • Doggett H (1976) Sorghum. In: Simmonds NW (ed) Evolution of crop plants. Longman Scientific and Technicial, Essex, UK, pp 112–117

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. John Wiley and Sons, New York, pp 150–197

    Google Scholar 

  • Endrizzi JE, Morgan DT (1955) Chromosomal interchanges and evidence for duplication in haploid Sorghum vulgare. J Hered 46:201–208

    Google Scholar 

  • Feinburg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Garber ED (1944) A cytological study of the genus Sorghum: subsections Parasorghum and Eusorghum. Am Nat 78:89–94

    Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schactschabel U, Kaufmann H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F, (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    Google Scholar 

  • Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD (1991) Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res 19:6553–6558

    Google Scholar 

  • Hadley HH (1953) Cytological relationships between Sorghum vulgare and S. halepense. Agron J 45:139–143

    Google Scholar 

  • Holm LG, Plucknett DL, Pancho JV, Herberger JP (1977) Sorghum halepense (L.) Pers. In: The world's worst weeds: distribution and biology. University Press of Hawaii, Honolulu, Hawaii, pp 54–61

    Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    CAS  PubMed  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TJ (1990) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, California

    Google Scholar 

  • Kidd HJ (1952) Haploid and triploid sorghum. J Hered 43:204–225

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato using random primers and near isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Google Scholar 

  • McCabe PC (1990) Production of single-stranded DNA by asymmetric PCR In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, California, pp 76–83

    Google Scholar 

  • McWhorter CG (1989) History, biology, and control of johnsongrass. Rev Weed Sci 4:85–121

    Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked-segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms, Nature 335:721–726

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Deverna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    Google Scholar 

  • Paterson AH, Tanksley SD, Sorrells ME (1992) DNA markers in crop improvement. In: Sparks DL (ed) Advances in agronomy. Academic Press, New York, pp 39–90

    Google Scholar 

  • Paterson AH, Wing RA (1993) Genome mapping in plants. Curr Opin Biotechnol (in press)

  • Pereira MG, Lee M, Bramel-Cox P (1992) RFLP genetic linkage mapping in sorghum. Agron Abstr 1992:110

    Google Scholar 

  • Reed KC, Mann DA (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res 13:7207–7221

    Google Scholar 

  • Rosenow DT, Clark LE (1987) Utilization of exotic germplasm in breeding for yield stability. In: Proc 15th Biennial Grain Sorghum Research and Utilization Conference, Lubbock, Texas, pp 49–56

  • Saghai-Maroof MA, Soliman KM, Jorgenson R, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sharma AK, Bhattacharjee D (1957) Chromosome studies in Sorghum. I. Cytologica 22:287–311

    Google Scholar 

  • Stephens JC, Miller FR, Rosenow DT (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Google Scholar 

  • Tang H, Liang GH (1988) The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and johnsongrass [S. halepense (L.) Pers.]: a re-evaluation. Theor Appl Genet 76:277–284

    Google Scholar 

  • Tanksley SD, Bernatzky RB, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Yound ND (1992) High-density molecular maps of the tomato and potato genomes. Genetics 132:1141–1160

    CAS  PubMed  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome mapping of sorghum and maize. Genetics 132:1119–1130

    Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) Oligonucleotide primers of arbitrary sequence amplify DNA polymorphisms which are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Salamini

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittenden, L.M., Schertz, K.F., Lin, Y.R. et al. A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theoret. Appl. Genetics 87, 925–933 (1994). https://doi.org/10.1007/BF00225786

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00225786

Key words

Navigation