Skip to main content
Log in

Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The shoot fly is one of the most destructive insect pests of sorghum at the seedling stage. Deployment of cultivars with improved shoot fly resistance would be facilitated by the use of molecular markers linked to QTL. The objective of this study was to dissect the genetic basis of resistance into QTL, using replicated phenotypic data sets obtained from four test environments, and a 162 microsatellite marker-based linkage map constructed using 168 RILs of the cross 296B (susceptible) × IS18551 (resistant). Considering five component traits and four environments, a total of 29 QTL were detected by multiple QTL mapping (MQM) viz., four each for leaf glossiness and seedling vigor, seven for oviposition, six for deadhearts, two for adaxial trichome density and six for abaxial trichome density. The LOD and R 2 (%) values of QTL ranged from 2.6 to 15.0 and 5.0 to 33%, respectively. For most of the QTL, IS18551 contributed resistance alleles; however, at six QTL, alleles from 296B also contributed to resistance. QTL of the related component traits were co-localized, suggesting pleiotropy or tight linkage of genes. The new morphological marker Trit for trichome type was associated with the major QTL for component traits of resistance. Interestingly, QTL identified in this study correspond to QTL/genes for insect resistance at the syntenic maize genomic regions, suggesting the conservation of insect resistance loci between these crops. For majority of the QTL, possible candidate genes lie within or very near the ascribed confidence intervals in sorghum. Finally, the QTL identified in the study should provide a foundation for marker-assisted selection (MAS) programs for improving shoot fly resistance in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrama HA, Widle GE, Reeses JC, Campbell LR, Tuinstra MR (2002) Genetic mapping of QTL associated with green bug resistance and tolerance in Sorghum bicolor. Theor Appl Genet 104:1373–1378

    Article  PubMed  CAS  Google Scholar 

  • Agrawal BL, Abraham CV (1985) Breeding sorghum for resistance to shoot fly and midge. In: Proceedings of the international sorghum entomology workshop, Texas A&M University, College Station, Texas, USA, 15–21 July 1984. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, pp 371–383

  • Agrawal BL, House (1982) Breeding for pest resistance in sorghum. In: Sorghum in eighties, proceedings of the international symposium on sorghum, 2–7 November 1981. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, pp 435–446

  • Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB, Everson RE (2004) In: Sorghum genetic enhancement: research progress, dissemination and impacts. International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India, ISBN 92–9066–470–3, pp 320

  • Bhattramakki D, Dong J, Chabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Biradar SG, Borikar ST, Chundurwar RD (1986) Trichome density in some progeny of sorghum. Sorghum Newsl 29:107

    Google Scholar 

  • Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE (2000) QTL mapping for resistance against the European corn borer (Ostrinia Nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet 101:907–917

    Article  CAS  Google Scholar 

  • Brooks TD, Willcox MC, Williams WP, Buckley PM (2005) Quantitative trait loci conferring resistance to fall armyworm and southwestern corn borer leaf feeding damage. Crop Sci 45:2430–2434

    Article  CAS  Google Scholar 

  • Byrne P, McMullen M, Snook ME, Musket TA, Theuri J, Widstrom NW, Wiseman BR, Coe E (1996) Quantitative trait loci and metabolic pathways: Genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci USA 3:8820–8825

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • CIMMYT (1994) QTL data for populations Ki3 × CML139 and CML131 × CML67. Maizegdb source (http://www.maizegdb.org)

  • Cominelli E, Sala T, Calvi D, Gusmaroli D, Tonelli C (2008) Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J 53:53–64

    PubMed  CAS  Google Scholar 

  • Day IS, Reddy VS, Ali GS, Reddy ASN (2002) Analysis of EF-hand-containing proteins in Arabidopsis. Genome Biol 3:0056.1–0056.24

    Google Scholar 

  • Deu M, Ratnadass A, Hamada MA, Noyer JL, Diabate M, Chantereau J (2005) Quantitative trait loci for head-bug resistance in sorghum. African J of Biotech 4:247–250

    CAS  Google Scholar 

  • Dhillon MK, Sharma HC, Reddy BVS, Singh Ram, Naresh JS, Kai Zhu (2005) Relative susceptibility of different male-sterile cytoplasms in sorghum to shoot fly, Atherigona soccata. Euphytica 144:275–283

    Article  Google Scholar 

  • Dievart A, Clark SE (2004) LRR-containing receptors regulating plant development and defense. Development 131:251–261

    Article  PubMed  CAS  Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn. Longman Scientific & Technical/Wiley, New York, pp 1–12

    Google Scholar 

  • Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. Cornell Univ Agirc Exp Stn Memoir 180:1–83

    Google Scholar 

  • Espelie KE, Franceschi VR, Kolattukudy PE (1986) Immunocytochemical localization and time course of appearance of an anionic peroxidase associated with suberization in wound-healing potato tuber tissue. Plant Physiol 81:487–492

    Article  PubMed  CAS  Google Scholar 

  • Eun Park J, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim J, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biochem 282:10036–10046

    Google Scholar 

  • FAO (2002) Year Book 56. Food and Agricultural Organization, Rome

  • Fritz AK, Reddy AS, Pammi S, Ayres NM (1995) Silver staining as a low-cost, non-radioactive method of detecting PCR products. In: Agronomy abstracts, ASA, Madison, WI, p 184

  • Gomi K, Yamamato H, Akimitsu K (2003) Epoxide hydrolase: a mRNA induced by the fungal pathogen Alternaria alternata on rough lemon (Citrus jambhiri Lush). Plant Mol Biol 53:189–199

    Article  PubMed  CAS  Google Scholar 

  • Goud PK, Anahosur KH, Kulkarni KA (1983) Breeding for multiple resistance in sorghum. In: Proceedings of national seminar on breeding crop plants for resistance pests and diseases, 25–27th May, Tamilnadu Agricultural University, Coimbatore, p 3

  • Griffiths CM, Hosken S, Thomas HT, Greaves J, Blair B, Schuch W (1995) The timing of maize leaf senescence and characterization of senescence-related cDNAs. Physiol Plant 93:673–682

    Article  Google Scholar 

  • Guterman A, Hajouj T, Gepstein S (2003) Senescence-associated mRNAs that may participate in signal transduction and protein trafficking. Physiol Plant 118:439–446

    Article  CAS  Google Scholar 

  • Hallali MS, Gowda BTS, Kulkarni KA, Goud JV (1983) Evaluation of advanced generation progenies for resistance to shoot fly in sorghum. Indian J Genet 43:291–293

    Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State Unviersity Press, Ames

    Google Scholar 

  • Hayes HK, Chang MS (1939) Recent linkage studies in maize. II. Zebra-striped-6 (zb6). Genetics 24:60

    Google Scholar 

  • Hiremath PS, Renukarya MK (1966) Occurrence, distribution and abundance of shoot fly on CSH 1. Sorghum Newsl 9:37

    Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  • ICRISAT (1992) Annual report 1991. International Crop Research Institute for Semi-arid Tropics, Patancheru, Andhra Pradesh, India

  • Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, lskamp MH, Larkin J, Schnittger A (2008) Transcriptional profiling of mature arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol 148:1583–1602

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jayanthi PDK, Reddy BVS, Gour TB, Reddy DDR (2002) Early seedling vigour in sorghum and its relationship with resistance to shoot fly Atherigona soccata (Rond). J Entomological Res 26:93–100

    Google Scholar 

  • Jotwani MG (1982) Factors reducing sorghum yields–insect pests. In: Sorghum the Eighties. Proceedings International Symposium on Sorghum, 2–7 Nov, 1981. ICRISAT, Patancheru, pp 251–255

    Google Scholar 

  • Jotwani MG, Sharma GC, srivastava KK, Marwaha BG (1971) Ovipositional response of shoot fly, Atherigona varia soccata (Rondani) on some promising resistant lines of sorghum. In: Pradhan S (ed) Investigations on insect pests of sorghum, millets (1965–1970). Final technical report, Division of Entomology, IARI, New Delhi, India, pp 119–122

    Google Scholar 

  • Kamatar MY, Salimath PM (2003) Morphological traits of sorghum associated with resistance to shoot fly, Atherigona soccata Rondani. Indian J Plant Prot 31:73–77

    Google Scholar 

  • Kelly AA, Froehlich JE, Dormann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Klein PE, Klein RR, Price HJ, Mullet JE, Stelly DM (2005) Chromosome identification and nomenclature of Sorghum bicolor. Genetics 169:1169–1173

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Google Scholar 

  • Kumar VK, Reddy KD, Rao MS, Singh BU (2000) Evaluation of some sorghum genotypes to shoot fly [Atherigona soccata (Rond)]. ANGRAU J Res 28:1–6

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 121:1447–1455

    Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Lauter N, Gustus C, Westerbergh A, Doebley J (2004) The inheritance and evolution of leaf pigmentation and pubescence in Teosinte. Genetics 167:1949–1959

    Article  PubMed  CAS  Google Scholar 

  • Maiti RK, Gibson PT (1983) Trichomes in segregating generations of sorghum matings. II. Association with shoot fly resistance. Crop Sci 23:76–79

    Google Scholar 

  • Maiti RK, Bidinger FR, Seshu Reddy KV, Gibson P, Davies JC (1980) Nature and occurrence of trichomes in sorghum lines with resistance to sorghum shoot fly. Joint progress report 3 of sorghum physiology and sorghum entomology. International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, pp 1–33

    Google Scholar 

  • Maiti RK, Prasada Rao KE, Raju PS, House LR (1984) The glossy trait in sorghum: its characteristics and significance in crop improvement. Field Crops Res 9:279–289

    Article  Google Scholar 

  • Marcell LM, Beattie GA (2002) Effect of leaf surface waxes on leaf colonization by Pantoea agglomeran sand Clavibacter michiganensis. Mol Plant-microb Interac 15:1236–1244

    Article  CAS  Google Scholar 

  • Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, Yativ M, Wang Z, Jetter R, Venger I, Adato A, Aharoni A (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol 147:823–851

    Article  PubMed  CAS  Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Molina A, Segura A, Garcia-Olmeda F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal pathogens. FEBS Lett 316:119–122

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355

    Article  PubMed  CAS  Google Scholar 

  • Moose SP, Lauter N, Carlson RS (2004) The maize macrohairless1 locus specifically promotes leaf blade macrohair initiation and responds to factors regulating leaf identity. Genetics 166:1451–1461

    Article  PubMed  CAS  Google Scholar 

  • Mote UN, Kadam JR, Bapat DR (1986) Antibiosis mechanisms of resistance to sorghum shoot fly. J Maharashtra Agric Univ 11:43–46

    Google Scholar 

  • Nagaraj N, Reese JC, Tuinstra MR, Smith CM, Amand PS, Kirkham MB, Kofoid KD, Campbell LR, Wilde GE (2005) Molecular mapping of sorghum genes expressing tolerance to damage by greenbug (Homoptera: Aphididae). J Econ Entomol 98:595–602

    Article  PubMed  CAS  Google Scholar 

  • Neuffer M, Coe E, Wessler SR (1997) Mutants in maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Nimbalkar VS, Bapat DR (1987) Genetic analyses of shoot fly resistance under high level of shoot fly infestation in sorghum. J Maharashtra Agric Univ 12:331–334

    Google Scholar 

  • Nimbalkar VS, Bapat DR (1992) Inheritance of shoot fly resistance in sorghum. J Maharashtra Agric Univ 17:93–96

    Google Scholar 

  • Nwanze KF, Reddy YVR, Soman P (1990) The role of leaf surface wetness in larval behavior of the sorghum shoot fly Atherigona soccata. Entomo Exp Appl 56:187–195

    Article  Google Scholar 

  • Nwanze KF, Reddy YVR, Taneja SL, Sharma HC, Agrawal BL (1991) Evaluating sorghum genotypes for multiple insect resistance. Insect Sci and Appl 12:183–188

    Google Scholar 

  • Nwanze KF, Pring RJ, Sree PS, Butler DR, Reddy YVR, Soman P (1992) Resistance in sorghum to shoot fly, Atherigona soccata: epicuticular wax and wetness of the central whorl leaf of young seedlings. Ann Appl Biol 120:373–382

    Article  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Opassiri R, Pomthong B, Onkoksoong T, Akiyama T, Esen A, Ketudat Cairns JR (2006) Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biology 6:33

    Article  PubMed  CAS  Google Scholar 

  • Ormaetxe IT, Haralampidis K, Papadopoulou K, Osbourn AE (2003) Molecular cloning and characterization of triterpene synthesis from Medicago truncatula and Lotus japonicas. Plant Mol Biol 51:731–743

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Pechan T, Ye L, Chang YM, Mitra A, Lin L, Davis FM, Williams WP, Luthe DS (2000) A unique 33-kD cysteine proteinase accumulates in response to larval feeding in maize genotypes resistant to fall armyworm and other Lepidoptera. Plant Cell 12:1031–1040

    Article  PubMed  CAS  Google Scholar 

  • Pont AC (1972) A review of the Oriental species of Atherigona Rondani (Diptera: Muscidae) of economic importance. In: Jotwani MG, Young WR (eds) Control of sorghum shoot fly. Oxford and IBH, New Delhi, pp 27–104

    Google Scholar 

  • Pont AC, Deeming JC (2001) A shoot fly Atherigona tritici sp. n. (Diptera: Muscidae), attacking wheat Triticum aestivum in Egypt. Bull Entomol Res 91:297–300

    PubMed  CAS  Google Scholar 

  • QiaoYing B, YuCheng W, ChuanPing Y, GuiFeng L (2008) LEA genes and drought tolerance CAB reviews: perspectives in agriculture, veterinary science, nutrition and natural resources, 2008, 3, No 012, February 2008, p 6

  • Sandhu GS, Dhaliwal GS, Sidhu BS (1988) Resistances of forage sorghum to shoot fly. Indian J Agric Sci 56:753–756

    Google Scholar 

  • Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747

    PubMed  CAS  Google Scholar 

  • Sarosh BR, Meijer J (2007) Transcriptional profiling by cDNA-AFLP reveals novel insights during methyl jasmonate, wounding and insect attack in Brassica napus. Plant Mol Biol 64:425–438

    Article  PubMed  CAS  Google Scholar 

  • Sattler SE, Mene-Saffrane L, Farmer EE, Krischke M, Mueller MJ, DellaPenna D (2006) Non-enzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants. The Plant Cell 18:3706–3720

    Article  PubMed  CAS  Google Scholar 

  • Schnurr J, Shockey J, Browse J (2004) The Acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell 16:629–642

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma HC, Taneja SL, Kameswara Rao N, Prasada Rao KE (2003) Evaluation of sorghum germplasm for resistance to insect pests. Information Bulletin No. 63, International Crops Research Institute for the Semi-Arid Tropics, Andhra Pradesh, India, p 177

  • Showwalter AM, Bell JN, Cramer CL, Bailey JA, Varner JE, Lamb CJ (1985) Accumulation of hydroxyproline-rich glycoprotein mRNAs in response to fungal elicitor and infection. Proc Nati Acad Sci USA 82:6551–6555

    Article  Google Scholar 

  • Singh BU, Rana BS (1996) Emerging strategies of integrated pest management in sorghum. In: Proceedings of 2nd international crop science congress: crop productivity and sustainability-shaping the future, 17–24 November 1996, IARI, New Delhi, p 154

  • Singh BU, Padmaja PG, Seetharama N (2004) Stability of biochemical constituents and their relationship with resistance to shoot fly Atherigona soccata (Rond.) in seedling sorghum. Euphytica 136:279–289

    Article  CAS  Google Scholar 

  • Smith JSC, Kresovich S, Hopkins MS, Mitchell SE, Dean RE, Woodman WL, Lee M, Porter K (2000) Genetic diversity among elite sorghum inbred lines assessed with simple sequence repeats. Crop Sci 40:226–232

    Article  CAS  Google Scholar 

  • Soto PE (1974) Ovipositional preference and antibiosis in relation to resistance to sorghum shoot fly. J Econ Entomol 67:165–167

    Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R, Balakrishna D, Venkatesh Bhat B, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009a) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Nagaraja Reddy R, Murali Mohan S, Seetharama N (2009b) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Sturaro M, Hartings H, Schmelzer E, Velasco R, Salamini F, Motto M (2005) Cloning and characterization of GLOSSY1, a maize gene involved in cuticle membrane and wax production. Plant Physiol 138:478–489

    Article  PubMed  CAS  Google Scholar 

  • Sukhani TR (1987) Evaluation of resistance to sorghum shoot fly, Atherigona soccata Rondani. Paper presented during XVIIth All India Workshop of AICIP, held at Marathwada Agricultural University, Parbhani (India), on May 25–27

  • Sukhani TR, Jotwani MG (1980) Efficacy of some newer systemic insecticides for the control of sorghum shootfly [Atherigona soccata (Rondani)]. Indian J Entomology 42:76–81

    Google Scholar 

  • Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defense. Curr Opinion Plant Biol 9:383–390

    Article  CAS  Google Scholar 

  • Taneja SL, Leuschner K (1985) Resistance screening and mechanisms of resistance in sorghum to shoot fly. In: Proceedings of the international sorghum entomology workshop, 15–21 July, 1984, Texas A&M University, College Station, Texas, USA, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India, pp 115–129

  • Tao YZ, Hardy A, Drenth J, Henzell RG, Franzmann BA, Jordan DR, Butler DG, McIntyre CL (2003) Identifications of two different mechanisms for sorghum midge resistance through QTL mapping. Theor Appl Gen 107:116–122

    CAS  Google Scholar 

  • Tarumoto I, Miyazaki M, Matsumura T (1981) Scanning electron microscopic study of the surfaces of glossy and non-glossy leaves in sorghum Sorghum bicolor (L.) Moench. Bull Natl Grassl Res Inst 18:38–44

    Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (1999) LOD significance threshold for QTL analysis in experimental populations of diploid species. Heredity 83:613–624

    Article  PubMed  Google Scholar 

  • Van Ooijen JW (2005) Map-QTL®5: software for the mapping quantitative trait loci in mapping populations. Kyazma BV, Wageningen

  • Van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0 Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular facilitated studies of morphological traits in an elite maize population. II. Determination of QTL for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  Google Scholar 

  • Williams WP, Buckley PM, Davis FM (2000) Vegetative phase change in maize and its association with resistance to fall army worm. Maydica 45:215–219

    Google Scholar 

  • Wu Y, Huang Y (2008) Molecular mapping of QTL for resistance to the greenbug Schizaphis graminum (Rondani) in Sorghum bicolor (Moench). Theor Appl Genet 117:117–124

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Tanksley SD (1996) Identification of QTL affecting traits of agronomic importance in a recombinant inbred population derived from a sub specific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to convey his thanks to the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance for the doctoral program. The authors also gratefully acknowledge the Department of Biotechnology (DBT), Government of India for funding part of the research work. The authors wish to acknowledge Dr. B.V.S. Reddy (Principal Scientist, ICRISAT) for providing the mapping population, Dr. Rajender Prasad (Indian Agricultural Statistics Research Institute, New Delhi) for suggestions in statistical analysis, and Dr. P. Rajendra Kumar, Senior Scientist (DSR) and Dr. R.M. Sundaram, Senior Scientist (DRR) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana.

Additional information

Communicated by H. H. Geiger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 34.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satish, K., Srinivas, G., Madhusudhana, R. et al. Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119, 1425–1439 (2009). https://doi.org/10.1007/s00122-009-1145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1145-8

Keywords

Navigation