Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  PubMed  CAS  Google Scholar 

  • Armstrong CL (1999) The first decade of maize transformation: a review and future perspective. Maydica 44:101–109

    Google Scholar 

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of L-proline. Planta 164:207–214

    Article  CAS  Google Scholar 

  • Armstrong CL, Petersen WL, Buchholz WG, Bowen BA, Sulc SL (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep 9:335–339

    Article  CAS  Google Scholar 

  • Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop News Lett 65:92–93

    Google Scholar 

  • Armstrong CL, Romero-Severson J, Hodges TK (1992) Improved tissue culture response of an elite maize inbred through backcross breeding, and identification of chromosomal regions important for regeneration by RFLP analysis. Theor Appl Genet 84:755–762

    Article  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, Deboer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ, Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci 35:550–557

    Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    Article  PubMed  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Bennetzen JL, Lin C (1988) Transformation of Adh null pollen to Adh+ by microinjection. Maize Genet Coop News Lett 62:113–114

    Google Scholar 

  • Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  • Bowman JL, Eshed Y (2000). Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–3158

    Article  PubMed  CAS  Google Scholar 

  • Braun HJ (2004) Ceramic material. In: Hempstead CA, Worthington WE Jr (eds) Encyclopedia of 20th century technology. Taylor & Francis/Routledge, Kentucky, pp 134–136

    Google Scholar 

  • Breitler JC, Labeyrie A, Meynard D, Legavre T, Guiderdoni E (2002) Efficient microprojectile bombardment-mediated transformation of rice using gene cassettes. Theor Appl Genet 104:709–719

    Article  PubMed  CAS  Google Scholar 

  • Breitler JC, Meynard D, Van Boxtel J, Royer M, Bonnot F, Cambillau L, Guiderdoni E (2004). Anovel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res 13:271–287

    Article  PubMed  CAS  Google Scholar 

  • Brettschneider R, Becker D, Loerz H (1997) Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl Genet 94:737–748

    Article  CAS  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633

    Article  PubMed  CAS  Google Scholar 

  • Burgoon AC, Bottino PJ (1976) Uptake of the nitrogen fixing blue-green algae Gloecapsa into protoplasts of tobacco and maize. J Hered 67:223–226

    Google Scholar 

  • Cao J, Wang YC, Klein TM, Sanford J, Wu R (1990) Transformation of rice and maize using the biolistic process. In: Lamb CJ, Beachy RN (eds) Plant gene transfer. (UCLA Symp Mol Cell Biol, vol 129) Wiley-Liss, New York, pp 21–33

    Google Scholar 

  • Carvalho CHS, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17:73–76

    Article  CAS  Google Scholar 

  • Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C, Yin KC, Chu YC, Bi FY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18:659–668

    Google Scholar 

  • Cigan M, Unger-Wallace E, Haug-Collet K (2005) RNAi-mediated transcriptional silencing of anther-expressed genes results in male sterile maize. Annu Maize Genet Conf Proc Abstr 47:93, Abstr 93

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coe E, Sarkar K (1966) Preparation of nucleic acids and a genetic transformation attempt in maize. Crop Sci 6:432–435

    CAS  Google Scholar 

  • Daniell H, Varma S (1998) Chloroplast-transgenic plants: panacea — no! Gene containment — yes! Nat Biotechnol 16:602

    Article  PubMed  CAS  Google Scholar 

  • De Wet JMJ, Bergquist RR, Harlan JF, Brink DE, Cohen CE, Newell CA, De Wet AE (1985) Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen. In: Chapman GP, Mantell SH, Daniels RW (eds) Experimental manipulation of ovule tissues. Longman, London, pp 197–209

    Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schell J, Montagu MV (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, De Beuckeleer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea-mays genotypes. Planta 165:322–332

    Article  CAS  Google Scholar 

  • Dunder E, Dawson J, Suttie J, Page G (1995) Maize transformation by microprojectile bombardment of immature embryos. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, Berlin Heidelberg New York, pp 127–138

    Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2004) A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 22:455–458

    Article  PubMed  CAS  Google Scholar 

  • Evans R, Wang A, Hanten J, Alterdorf R, Metter I (1996) A positive selection system for maize transformation. In Vitro Cell Dev Biol Plant 32:72A

    Google Scholar 

  • Fagard M, Vaucheret H (2000) (Trans)gene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2004) FAOSTAT statistical database. Food and Agriculture Organization of the United Nations, Rome. Available at: apps.fao.org/faostat/form?collection=Production.Crops.Primary&Domain=Production&servlet=1&hasbulk=0&version=ext&language=EN

    Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80:4803–4807

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6:941–948

    Article  CAS  Google Scholar 

  • Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable P, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Biol Plant 36:21–29

    Article  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Frame B, McMurray J, Fonger TM, Main M, Torney F, Margie P, Taylor K, Wang K (2005) Agrobacterium-mediated stable transformation of multiple maize inbred lines using a standard binary vector system. Annu Maize Genet Conf Proc Abstr 47:68, Abstr 60

    Google Scholar 

  • Fransz PF, Schel JHN (1990) Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Can J Bot 69:26–33

    Google Scholar 

  • Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82:5824–5828

    Article  PubMed  CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793

    Article  PubMed  CAS  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol 51:223–256

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2005) Agricultural biotechnology: gene exchange by design. Nature 433:583–584

    Article  PubMed  CAS  Google Scholar 

  • Golovkin MV, Ábrahám M, Mórocz S, Bottka S, Fehér A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41–52

    Article  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WGO, Brien JV, Chambers SA, Whitney J, Adams R, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, O’Brien JV, Start WG, Daines RJ, Adams TR, Mangano ML, Chambers SA, Zachwieja SJ, Willetts NG, Adams WR Jr, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1991) Transformation of maize using microprojectile bombardment: update and perspective. In Vitro Cell Dev Biol Plant 27:21–27

    Article  Google Scholar 

  • Gould J, Devey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95:426–434

    PubMed  CAS  Google Scholar 

  • Green CE, Phillips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15:417–427

    Google Scholar 

  • Grimsley N, Hohn B, Hohn T, Walden R (1986) “Agroinfection” an alternative route for viral infection of plants by using the Ti plasmid. Proc Natl Acad Sci USA 83:3282–3286

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  PubMed  CAS  Google Scholar 

  • Howe AR, Tamayo F, Brown Armstrong C, Fromm M, Hart J, Padgette S, Parker G, Horsch R (1992) Development of glyphosate as a selectable marker for the production of fertile transgenic corn plants. In Vitro Cell Dev Biol 28:124A

    Google Scholar 

  • Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea mays L.). Plant Cell Rep 22:793–800

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult 83:187–200

    Article  Google Scholar 

  • Hunold R, Bronner R, Hahne G (1994) Early events in microprojectile bombardment: cell viability and particle location. Plant J 5:593–604

    CAS  Google Scholar 

  • Hwang HH, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell 16:3148–3167

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Hiei Y, Komari T (2003) Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Plant Biotechnol 20:57–66

    CAS  Google Scholar 

  • James C (2004) Preview: global status of commercialized biotech/GM crops: 2004. International Service for the Acquisition of Agri-Biotech Applications Briefs 32

    Google Scholar 

  • Johnson LA (2000) Corn, the major cereal of the americas. In: Kulp K, Ponte J (eds) Handbook of cereal science and technology. Dekker, New York, pp 31–80

    Google Scholar 

  • Kaeppler HF, Gu W, Somers DA, Rines HW, Cockburn AF (1990) Silicon carbide fiber-mediated DNA delivery into plant cells. Plant Cell Rep 9:415–418

    Article  CAS  Google Scholar 

  • Kaeppler HF, Somers DA, Rines HW, Cockburn AF (1992) Silicon carbide fiber-mediated stable transformation of plant cells. Theor Appl Genet 84:560–566

    Article  Google Scholar 

  • Kausch AP, Adams TR, Mangano M, Zachwieja SJ, Gordon-Kamm W, Daines R, Willets NG, Chambers SA, Adams W Jr, Anderson A (1995) Effects of microprojectile bombardment on embryogenic suspension cell cultures of maize (Zea mays L.) used for genetic transformation. Planta 196:501–509

    Article  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA 85:4305–4309

    Article  PubMed  CAS  Google Scholar 

  • Klein TM, Kornstein L, Sanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol 91:440–444

    PubMed  CAS  Google Scholar 

  • Kleinhofs A, Behki R (1977) Prospects for plant genome modification by nonconventional methods. Annu Rev Genet 11:79–101

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Kubo T (1999) Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil IK (ed) Molecular improvement of cereal crops. Kluwer Academic, Dordrecht, pp 43–82

    Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945–957

    Article  PubMed  CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merline E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200

    Article  CAS  Google Scholar 

  • Kuraya Y, Komari T, Hiei Y (2001) Vectors for transforming plants. Patent WO 2001/025459 A1

    Google Scholar 

  • Laursen CM, Krzyzek RA, Flick CE, Anderson PC, Spencer TM (1994) Production of fertile transgenic maize by electroporation of suspension culture cells. Plant Mol Biol 24:51–61

    Article  PubMed  CAS  Google Scholar 

  • Ledoux L, Huart R (1968) Integration and replication of DNA of M. lysodeikticus in DNA of germinating barley. Nature 218:1256–1259

    Article  PubMed  CAS  Google Scholar 

  • Lee M, Phillips R (1987) Genomic rearrangements in maize induced by tissue culture. Genome 29:122–128

    Google Scholar 

  • Levings CS III (1993) Thoughts on cytoplasmic male sterility in cms-T maize. Plant Cell 5:1285–1290

    Article  PubMed  Google Scholar 

  • Li W, Masilamany P, Kasha KJ, Peter Pauls K (2002a) Developmental, tissue culture, and genotypic factors affecting plant regeneration from shoot apical merstems of germinated (Zea mays L.) seedlings. In Vitro Cell Dev Biol Plant 38:285–292

    Google Scholar 

  • Li W, Masilmany P, Kasha KJ, Peter Pauls K (2002b) Agrobacterium tumefaciens-mediated transformation of corn multi-shoot cultures. In: IAPTC&B (ed) Tenth IAPTC&B congress proceedings. IAPTC&B, Orlando, Abstr P-1416

    Google Scholar 

  • Lowe BA, Way MM, Kumpf JM, Rout JR, Johnson R, Warner D, Armstrong C, Spencer TM, Chomet PS (2004) Development of a transformation competent elite maize line by marker assisted breeding. World Congr In Vitro Biol 40:P–2030

    Google Scholar 

  • Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce DA, Gordon Kamm W (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13:677–682

    Article  CAS  Google Scholar 

  • Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. Plant Physiol 125:1585–1590

    Article  PubMed  CAS  Google Scholar 

  • Lutz KA, Corneille S, Azhagiri AK, Svab Z, Maliga P (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J 37:906–913

    Article  PubMed  CAS  Google Scholar 

  • Lyznik LA, Rao KV, Hodges TK (1996) FLP-mediated recombination of FRT sites in the maize genome. Nucleic Acids Res 24:3784–3789

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie S, He S, Lyznik A (1994) The elusive plant mitochondrion as a genetic system. Plant Physiol 105:775–780

    PubMed  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    Article  PubMed  CAS  Google Scholar 

  • Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Nawrath C, Bakkeren G, Crameri A, Angelis K, Redei GP, Schell J, Hohn B, Koncz C (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  Google Scholar 

  • McCabe D, Christou P (1993) Direct DNA transfer using electric discharge particle acceleration (ACCELLℳ technology). Plant Cell Tissue Organ Cult 33:227–236

    Article  CAS  Google Scholar 

  • McCormac AC, Fowler MR, Chen DF, Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10:143–155

    Article  PubMed  CAS  Google Scholar 

  • Meza TJ, Stangeland B, Mercy IS, Skarn M, Nymoen DA, Berg A, Butenko MA, Hakelien AM, Haslekas C, Maza-Zepeda LA, Aalen RB (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res 30:4556–4566

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Mórocz S, Donn G, Németh J, Dudits D (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor Appl Genet 80:721–726

    Article  Google Scholar 

  • Moschini G, Lapan H, Sobolevsky A (2000) Roundup Ready® soybeans and welfare effects in the soybean complex. Agribusiness 16:33–55

    Article  Google Scholar 

  • Mysore KS, Nam J, Gelvin SB (2000) An Arabidopsis histone H2A mutant is deficient in Agrobacterium T-DNA integration. Proc Natl Acad Sci USA 97:948–953

    Article  PubMed  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiol 92:334–339

    PubMed  CAS  Google Scholar 

  • O’Connor-Sanchez A, Cabrera-Ponce JL, Valdez-Melara M, Tellez-Rodriguez P, Pons-Hernandez JL, Herrera-Estrella L (2002) Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep 21:302–312

    Article  CAS  Google Scholar 

  • Ohta Y (1986) High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83:715–719

    Article  PubMed  CAS  Google Scholar 

  • Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706–711

    Article  CAS  Google Scholar 

  • Omirulleh S, Abraham M, Golovkin M, Stefanov I, Karabaev MK, Mustardy L, Mórocz S, Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol Biol 21:415–428

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2001) The right chemistry for marker gene removal? Nat Biotechnol 19:115–116

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2006) Transgene management via multiple site-specific recombination systems (2004 SIVB congress symposium proceedings). In Vitro Cell Dev Biol Plant (in press)

    Google Scholar 

  • Pareddy D, Petolino J (1997) Maize transformation via helium blasting. Maydica 42:143–154

    Google Scholar 

  • Pescitelli SM, Sukhapinda K (1995) Stable transformation via electroporation into maize type II callus and regeneration of fertile transgenic plants. Plant Cell Rep 14:712–716

    Article  CAS  Google Scholar 

  • Petolino JF, Hopkins NL, Kosegi BD, Skokut M (2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep 19:781–786

    Article  CAS  Google Scholar 

  • Phillips RL, Somers DA, Hibberd KA (1988) Cell/Tissue culture and in vitro manipulation. In: Sprague GF Jr, Dudley JW (eds) Corn and corn improvement. American Society of Agronomy, Madison, pp 345–387

    Google Scholar 

  • Potrykus I, Hoffmann F (1973) Transplantation of nuclei into protoplasts of higher plants. Z Pflanzenphysiol 69:287–289

    Google Scholar 

  • Prioli LM, Sondahl MR (1989) Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L). Bio/Technology 7:589–594

    Article  Google Scholar 

  • Randolph-Anderson B, Boynton JE, Dawson J, Dunder E, Eskes R, Gillham NW, Johnson A, Perlman PS, Suttie J, Heiser WC (1997) Sub-micron gold particles are superior to larger particles for efficient Biolistic® transformation of organelles and some cell types. Bio-Rad Tech Bull 2015

    Google Scholar 

  • Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K, Kramer C, Chang YF, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127–132

    Article  CAS  Google Scholar 

  • Register JC III, Peterson DJ, Bell PJ, Bullock WP, Evans IJ, Frame B, Greenland AJ, Higgs NS, Jepson I, Jiao S, Lewnau CJ, Silick JM, Wilson HM (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25:951–961

    Article  PubMed  CAS  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 240:204–207

    Article  PubMed  CAS  Google Scholar 

  • Ritchie SW, Liu CN, Sellmer JC, Kononowicz H, Hodges TK, Gelvin SB (1993) Agrobacterium tumefaciens-mediated expression of gusA in maize tissues. Transgenic Res 2:252–265

    Article  CAS  Google Scholar 

  • Rogers JS, Edwardson JR (1952) The utilization of cytoplasmic male-sterile inbreds in the production of corn hybrids. Agron J 44:8–13

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol 98:1050–1056

    PubMed  CAS  Google Scholar 

  • Sairam RV, Parani M, Franklin G, Lifeng Z, Smith B, MacDougall J, Wilber C, Sheikhi H, Kashikar N, Meeker K, Al-Abed D, Berry K, Vierling R, Goldman SL (2003) Shoot meristem: an ideal explant for Zea mays L. transformation. Genome 46:323–329

    Article  PubMed  CAS  Google Scholar 

  • Sanford JC, Devit MJ, Russell JA, Smith FD, Harpending PR, Roy MK, Johnston SA (1991) An improved, helium-driven biolistic device. Technique 3:3–16

    CAS  Google Scholar 

  • Schlappi M, Hohn B (1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16

    Article  PubMed  Google Scholar 

  • Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    Article  PubMed  CAS  Google Scholar 

  • Shen WH, Escudero J, Schläppi M, Ramos C, Hohn B, Koukolikoviá-Nicola Z (1993) T-DNA transfer to maize cells: histochemical investigation of ß-glucuronidase activity in maize tissues. Proc Natl Acad Sci USA 90:1488–1492

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WF (1982) Black Mexican sweet corn: Its use for tissue cultures. In: Sheridan WF (ed) Maize for biological research. Plant Molecular Biology Association, Charlottesville, pp 385–388

    Google Scholar 

  • Shillito RD, Carswell GK, Johnson CM, DiMaio JJ, Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7:581–587

    Article  Google Scholar 

  • Shou H, Frame B, Whitham S, Wang K (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation. Mol Breed 13:201–208

    Article  CAS  Google Scholar 

  • Shull GH (1908) The composition of a field of maize. Am Breed Assoc Rep 4:296–301

    Google Scholar 

  • Shurvinton CE, Hodges L, Ream W (1992) A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci USA 89:11837–11841

    Article  PubMed  CAS  Google Scholar 

  • Sidorov V, Gilbertson L, Addae P, Duncan D (2006) Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep 25:320–328

    Article  PubMed  CAS  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant-tumor of bacterial origin. Science 25:671–673

    Article  PubMed  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult 40:1–15

    Article  CAS  Google Scholar 

  • Songstad DD, Armstrong CL, Petersen WL, Hairston B, Hinchee MA (1996) Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev Biol 32:179–183

    Google Scholar 

  • Spencer TM, Gordon-Kamm WJ, Daines RJ, Start WG, Lemaux PG (1990) Bialaphos selection of stable transformants from maize cell culture. Theor Appl Genet 79:625

    Article  CAS  Google Scholar 

  • Srivastava V, Ow DW (2001) Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol Biol 46:561–566

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Ow DW (2002) Biolistic mediated site-specific integration in rice. Mol Breed 8:345–350

    Article  Google Scholar 

  • Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121

    Article  PubMed  CAS  Google Scholar 

  • Staub J M, Maliga P (1994) Extrachromosomal elements in tobacco plastids. Proc Natl Acad Sci USA 91:7468–7472

    Article  PubMed  CAS  Google Scholar 

  • Stevens WE, Berberich SA, Sheckell PA, Wiltse CC, Halsey ME, Horak MJ, Dunn DJ (2004) Optimizing pollen confinement in maize grown for regulated products. Crop Sci 44:2146–2153

    Google Scholar 

  • Stroun M, Anker P, Charles P, Ledoux L (1966) A biochemical and cytological study of the penetration of deoxyribonucleic acid in plants. Arch Int Physiol Biochim 74:320–321

    PubMed  CAS  Google Scholar 

  • Stroun M, Anker P, Ledoux L (1967a) DNA replication in Solanum lycopersicum esc. after absorption of bacterial DNA. Curr Mod Biol 1:231–234

    PubMed  CAS  Google Scholar 

  • Stroun M, Anker P, Charles P, Ledoux L (1967b) Translocation of DNA of bacterial origin in Lycopersicum esculentum by ultracentrifugation in caesium chloride gradient. Nature 215:975–976

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Dotson M, Keen NT (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol Biol 18:835–839

    Article  PubMed  CAS  Google Scholar 

  • Tregoning J, Maliga P, Dougan G, Nixon PJ (2004) New advances in the production of edible plant vaccines: chloroplast expression of a tetanus vaccine antigen, TetC. Phytochemistry 65:989–994

    Article  CAS  Google Scholar 

  • Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    Article  PubMed  CAS  Google Scholar 

  • Ullstrup AJ (1972) The impact of the southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • USDA-APHIS (2003) Field testing and plants engineered to produce pharmaceutical and industrial compounds. Fed Regul 11:337

    Google Scholar 

  • Vain P, Keen N, Murillo J, Rathus C, Memes C, Finer JJ (1993a) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246

    Article  CAS  Google Scholar 

  • Vain P, McMullen MD, Finer JJ (1993b) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84–88

    Article  Google Scholar 

  • Vasil IK, Hildebrandt AC, Riker AJ (1964) Endive plantlets from freely suspended cells and cell groups grown in vitro. Science 146:76–77

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892

    Article  PubMed  Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18:189–200

    Article  PubMed  CAS  Google Scholar 

  • Wan Y, Widholm JM, Lemaux PG (1995) Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14

    Article  CAS  Google Scholar 

  • Wang K, Frame B, Marcell L (2003) Genetic transformation of maize. In: Jaiwal PK, Singh R (eds) Plant genetic engineering. Sci Tech, Houston, pp 175–217

    Google Scholar 

  • Zhang S, Williams-Carrier R, Lemaux PG (2002) Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep 21:263–270

    Article  CAS  Google Scholar 

  • Zhang W, Subbarao S, Addae P, Shen A, Armstrong C, Peschke V, Gibertson L (2003) Cre/lox mediated marker gene excision in transgenic maize (Zea mays L.) plants. Theor Appl Genet 107:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop News Lett 72:34–37

    Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhong H, Srinivasan C, Sticklen MB (1992) In-vitro morphogenesis of corn (Zea mays L.). Planta 187:483–489

    Article  CAS  Google Scholar 

  • Zhong H, Sun B, Warkentin D, Zhang S, Wu R, Wu T, Sticklen MB (1996) The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol 110:1097–1107

    PubMed  CAS  Google Scholar 

  • Zhu Y, Nam J, Humara JM, Mysore KS, Lee LY, Cao H, Valentine L, Li J, Kaiser AD, Kopecky AL, Hwang HH, Bhattacharjee S, Rao PK, Tzfira T, Rajagopal J, Yi H, Veena Yadav BS, Crane YM, Lin K, Larcher Y, Gelvin MJK, Knue M, Ramos-Oliva C, Zhao X, Davis SJ, Kim SI, Ranjith-Kumar CT, Choi YJ, Hallan VK, Chattopadhyay S, Sui X, Ziemienowicz A, Matthysse AG, Citovsky V, Hohn B, Gelvin SB (2003) Identification of Arabidopsis rat mutants. Plant Physiol 132:494–505

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Torney, F., Frame, B., Wang, K. (2007). Maize. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_4

Download citation

Publish with us

Policies and ethics