Skip to main content
Log in

Agrobacterium tumefaciens-mediated expression ofgusA in maize tissues

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

To develop a system forAgrobacterium-mediated transformation of maize (Zea mays L.), we have investigated histochemically the transient expression of β-glucuronidase (GUS) activity in maize seedling tissue segments using binary vectors that allow minimal (pKIWI105 and pCNL1) or undetectable (p35S-GUS-INT and pCNL56) levels of GUS activity inA. tumefaciens. Tissue segments from three- to five-day-old sterile seedlings of maize genotype A188 were inoculated withA. tumefaciens. Four days after inoculation, transient expression of GUS activity was found in mesocotyl segments originating from the intercalary meristem region. This GUS activity was specific to the vascular cylinder and was not found in the internal cortical or epidermal layers, nor was it found in mature mesocotyl tissue (segments 5 mm below the coleoptilar node). Transient GUS activity was also detected in leaf and coleoptile tissues of shoot segments, but not in the shoot apexper se or in leaves younger than the first leaf. Maize tissues inoculated withA. tumefaciens strains that harbourgusA-containing binary vectors but no Ti-plasmid did not show GUS activity, supporting evidence from previous work thatvir gene activity was essential for the observed GUS activity.A. tumefaciens strains containing different types of Ti-plasmids were also tested. A strain harbouring an agropine-type Ti-plasmid was the most effective for expressing GUS activity in mesocotyl segments, whereas a strain harboring a nopaline-type Ti-plasmid was most effective for expression of GUS activity in the apical meristem-containing segment. These results indicate that different interactions occurred between the differentA. tumefaciens strains and the susceptible plant tissues. Maize genotype specificity for GUS activity in mesocotyl tissues was observed; variations in the cocultivation medium had a profound effect on the frequency of expression of GUS activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bevan, M. (1984) BinaryAgrobacterium vectors for plant transformation.Nucl. Acids Res. 12, 8711–21.

    Google Scholar 

  • Bommineni, V.R., Walden, D.B. and Greyson, R.I. (1989) Recovery of fertile plants from isolated, cultured maize shoot apices.Pl. Cell, Tissue Organ Cult. 19, 225–34.

    Google Scholar 

  • Boulton, M.I., Buchholz, W.G., Marks, M.S., Markham, P.G. and Davies, J.W. (1989) Specificity ofAgrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae.Pl. Mol. Biol. 12, 31–40.

    Google Scholar 

  • Castle, L.A. and Morris, R.O. (1990) A method for early detection of T-DNA transfer.Pl. Mol. Biol. Rep. 8, 28–39.

    Google Scholar 

  • Chilton, M.-D., Currier, T.C., Farrand, S.K., Bendich, A.J., Gordon, M.P. and Nester, E.W. (1974)Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors.Proc. Natl Acad. Sci. USA 71, 3672–6.

    Google Scholar 

  • Christou, P., Platt, S.G. and Ackerman, M.C. (1986) Opine synthesis in wild-type plant tissues.Pl. Physiol. 82, 218–21.

    Google Scholar 

  • Chu, C.C., Wang, C.C., Sun, C.S., Hsu, C., Yin, K.C., Chu, C.Y. and Bi, F.Y. (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources.Sci. Sinica 18, 659–68.

    Google Scholar 

  • Deblaere, R., Bytebier, B., De Greve, H., Deboeck, F., Schell, J., Montagu, M. van and Leemans, J. (1985) Efficient octopine Ti-plasmid-derived vectors forAgrobacterium-mediated gene transfer to plants.Nucl. Acids Res. 13, 4777–88.

    Google Scholar 

  • Dale, P.J., Marks, M.S., Brown, M.M., Woolston, C.J., Gunn, H.V., Mullineaux, P.M., Lewis, D.M., Kemp, J.M., Chen, D.F., Gilmour, D.M. and Flavell, R.B. (1989) Agroinfection of wheat: inoculation ofin vitro grown seedlings and embryos.Pl. Sci. 63, 237–45.

    Google Scholar 

  • Ditta, G., Stanfield, S., Corbin, D. and Helinksi, D.R. (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank ofRhizobium meliloti.Proc. Natl Acad. Sci. USA 77, 7347–51.

    Google Scholar 

  • Garfinkel, D.J., Simpson, R.B., Ream, L.W., White, F.F., Gordon, M.P. and Nester, E.W. (1981) Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis.Cell 27, 143–53.

    Google Scholar 

  • Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Peterson, G. and Smith, R.H. (1991) Transformation ofZea mays L. usingAgrobacterium tumefaciens and the shoot apex.Pl. Physiol. 95, 426–434.

    Google Scholar 

  • Graves, A.E. and Goldman, S.L. (1986) The transformation ofZea mays seedlings withAgrobacterium tumefaciens; detection of T-DNA specific enzyme activities.Pl. Mol. Biol. 7, 43–50.

    Google Scholar 

  • Graves, A.E., Goldman, S.L., Banks, S.W. and Graves, A.C.F. (1988) Seanning electron microscope studies ofAgrobacterium tumefaciens attachment toZea mays, Gladiolus sp., andTriticum aestivum.J. Bacteriol. 170, 2395–400.

    Google Scholar 

  • Grimsley, N., Hohn, T., Davies, J.W. and Hohn, B. (1987)Agrobacterium-mediated delivery of infectious maize streak virus into maize plants.Nature 325, 177–9.

    Google Scholar 

  • Grimsley, N.H., Ramos, C., Hein, T. and Hohn, B. (1988) Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus.Bio/Technology 6, 185–9.

    Google Scholar 

  • Grimsley, N., Hohn, B., Ramos, C., Kado, C. and Rogowsky, P. (1989) DNA transfer fromAgrobacterium toZea mays orBrassica by agroinfection is dependent on bacterial virulence functions.Mol. Gen. Genet. 217, 309–16.

    Google Scholar 

  • Higgins, E.S., Hulme, J.S. and Shields, R. (1992) Early events in transformation of potato byAgrobacterium tumefaciens.Pl. Sci. 82, 109–18.

    Google Scholar 

  • Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M.D. (1986) The hypervirulence ofAgrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.J. Bacteriol. 168, 1291–301.

    Google Scholar 

  • Horsch, R.B. and Klee, H.J. (1986) Rapid assay of foreign gene expression in leaf discs transformed byAgrobacterium tumefaciens: Role of T-DNA borders in the transfer process.Proc. Natl Acad. Sci. USA 83, 4428–32.

    Google Scholar 

  • Janssen, B.J. and Gardner, R.C. (1989) Localized transient expression of GUS in leaf discs following cocultivation withAgrobacterium.Pl. Mol. Biol. 14, 61–72.

    Google Scholar 

  • Jarchow, E., Grimsley, N.H. and Hohn, B. (1991)virF, the host-range-determining virulence gene ofAgrobacterium tumefaciens, affects T-DNA transfer toZea mays.Proc. Natl Acad. Sci. USA 88, 10426–30.

    Google Scholar 

  • Jefferson, R.A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system.Pl. Mol. Biol. Rep. 5, 387–405.

    Google Scholar 

  • Kamo, K.K., Becwar, M.R. and Hodges, T.K. (1985) Regeneration ofZea mays L. from embryogenic callus.Bot. Gaz. 146, 327–34.

    Google Scholar 

  • Klee, H.J., Yanofsky, M.F. and Nester, E.W. (1985) Vectors for transformation of higher plants.Bio/Technology 3, 637–42.

    Google Scholar 

  • Klein, T.M., Wolf, E.D., Wu, R., and Sanford, J.C. (1987) High velocity microprojectiles for delivering nucleic acids into living cells.Nature 327, 70–3.

    Google Scholar 

  • Larebeke, N. van., Engler, G., Holsters, M., Elsacker, S. Van den., Zaenen, I., Schilperoort, R.A., and Schell, J. (1974) Large plasmid inAgrobacterium tumefaciens essential for crown gall-inducing ability.Nature 252, 169–170.

    Google Scholar 

  • Marks, M.S., Kemp, J.M., Woolston, C.J. and Dale, P.J. (1989) Agroinfection of wheat: a comparison ofAgrobacterium strains.Pl. Sci. 63, 247–56.

    Google Scholar 

  • Messens, E., Dekeyser, R. and Stachel, S.E. (1990) A nontransformableTriticum monococcum monocotyledonous culture produces the potentAgrobacterium vir-inducing compound ethyl ferulate.Proc. Natl Acad. Sci. USA 87, 4368–72.

    Google Scholar 

  • Mooney, P.A. and Goodwin, P.B. (1991) Adherence ofAgrobacterium tumefaciens to the cells of immature wheat embryos.Pl. Cell, Tissue Organ Cult. 25, 199–208.

    Google Scholar 

  • Mooney, P.A., Goodwin, P.B., Dennis, E.S. and Llewellyn, D.J. (1991)Agrobacterium tumefaciens-gene transfer into wheat tissues.Pl. Cell, Tissue Organ Cult. 25, 209–18.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture.Physiol. Plant. 15, 73–97.

    Google Scholar 

  • Ooms, G., Hooykaas, P.J.J., Veen, R.J.M. van., Bleelen, P. van., Regensburg-Tuïnk, T.J.G., and Schilperoort, R.A. (1982) Octopine Ti-plasmid deletion mutants ofAgrobacterium tumefaciens with emphasis on the right side of the T-region.Plasmid 7, 15–29.

    Google Scholar 

  • Raineri, D.M., Bottino, P., Gordon, M.P. and Nester, E.W. (1990)Agrobacterium-mediated transformation of rice (Oryza sativa L.).Bio/Technology 8, 33–38.

    Google Scholar 

  • Sangwan, R.S., Bourgeois, Y., and Sangwan-Norreel, B.S. (1991) Genetic transformation ofArabidopsis thaliana zygotic embryos and identification of critical parameters influencing transformation efficiency.Mol. Gen. Genet. 230, 475–485.

    Google Scholar 

  • Schlappi, M. and Hohn, B. (1992) Competence of immature maize embryos forAgrobacterium-mediated gene transfer.Pl. Cell 4, 7–16.

    Google Scholar 

  • Schrammeijer, B., Sijmons, P.C., Elzen, P.J.M. van den. and Hoekema, A. (1990) Meristem transformation of sunflower viaAgrobacterium.Pl. Cell Rep. 9, 55–60.

    Google Scholar 

  • Sciaky, D., Montoya, A.L. and Chilton, M.D. (1978) Fingerprints ofAgrobacterium Ti-plasmids.Plasmid 1, 238–253.

    Google Scholar 

  • Usami, S., Shigehisa, O., Takebe, I. and Machida, Y. (1988) Factor inducingAgrobacterium tumefaciens vir gene expression is present in monocotyledonous plants.Proc. Natl Acad. Sci. USA 85, 3748–52.

    Google Scholar 

  • Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. (1990) Construction of an introncontaining marker gene: splicing of the intron in transgenic plants and its use in monitoring early events inAgrobacterium-mediated plant transformation.Mol. Gen. Genet. 220, 245–50.

    Google Scholar 

  • Watson, B., Currire, T.C., Gordon, M.P., Chilton, M.-D. and Nester, E.W. (1975) Plasmid required for virulence ofAgrobacterium tumefaciens.J. Bacteriol. 123, 255–64.

    Google Scholar 

  • Wordragen, M.F. van, De Jong, J., Schornagel, M.J. and Dons, H.J.M. (1992) Rapid screening for host-bacterium interactions inAgrobacterium-mediated gene transfer to chrysanthemum, by using the GUS-intron gene.Pl. Sci. 81, 207–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, S.W., Lui, CN., Sellmer, J.C. et al. Agrobacterium tumefaciens-mediated expression ofgusA in maize tissues. Transgenic Research 2, 252–265 (1993). https://doi.org/10.1007/BF01968838

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01968838

Keywords

Navigation