Skip to main content
Log in

Successful Agrobacterium-Mediated Genetic Transformation of Maize Elite Inbred lines

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

An efficient transformation system was developed for maize (Zea mays L.) elite inbred lines using Agrobacterium-mediated gene transfer by identifying important factors that affected transformation efficiency. The hypervirulent Agrobacterium tumefaciens strain EHA105 proved to be better than octopine LBA4404 and nopaline GV3101. Improved transformation efficiencies were obtained when immature embryos were inocubated with Agrobacterium suspension cells (A600 = 0.8) for 20 min in the presence of 0.1% (v/v) of a surfactant (Tween20) in the infection medium. Optimized cocultivation was performed in the acidic medium (pH5.4) at 22 °C in the dark for 3 days. Using the optimized system, we obtained 42 morphologically normal, independent transgenic plants in four maize elite inbred lines representing different genetic backgrounds. Most of them (about 85%) are fertile. The transformation frequency (the number of independent, PCR-positive transgenic plants per 100 embryos infected) ranged from 2.35 to 5.26%. Stable integration, expression, and inheritance of the transgenes were confirmed by molecular and genetic analysis. One to three copies of the transgene were integrated into the maize nuclear genome. About 70% of the transgenic plants received a single insertion of the transgenes based on Southern analysis of 10 transformed events. T1 plants were analyzed and transmission of transgenes to the T1 generation in a Mendelian fashion was verified. This system should facilitate the introduction of agronomically important genes into commercial genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

6-benzyladenine

bar:

phosphinothricin acetyltransferase gene

2,4-D:

2,4-dichloro phenoxyactic acid

GUS:

β-glucuronidase

IBA:

indole-3-butyric acid

MES:

2-(N-morpholino) ethanesulfonic acid

PCR:

polymerase chain reaction

PPT:

phosphinothricin

uidA:

β-glucuronidase gene from Escherichia coli

X-gluc:

5-bromo-4-chloro-3-indolyl-β-glucuronide

References

  • J Alt-Moerbe P Neddemann J Lintig Particlevon EW Weiler J Schroder (1988) ArticleTitleTemperature sensitive step in Ti plasmid vir region induction and correlation with cytokinin secretion by Agrobacterium Mol. Gen. Genet. 213 1–8 Occurrence Handle10.1007/BF00333390

    Article  Google Scholar 

  • BK Amoah H Wu C Sparks D Jones (2001) ArticleTitleFactors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue J. Exp. Bot. 51 1135–1142 Occurrence Handle10.1093/jexbot/52.358.1135

    Article  Google Scholar 

  • RG Birch (1997) ArticleTitlePlant transformation: problems and strategies for practical application Annu. Rev. Plant Physiol. Plant. Mol. Biol. 48 297–326 Occurrence Handle10.1146/annurev.arplant.48.1.297 Occurrence Handle15012265

    Article  PubMed  Google Scholar 

  • MT Chan TM Lee HH Chang (1992) ArticleTitleTransformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens Plant Cell Physiol. 33 577–583

    Google Scholar 

  • M Cheng JE Fry SZ Pang HP Zhou CM Hironaka DR Duncan TW Conner YC Wan (1997) ArticleTitleGenetic transformation of wheat mediated by Agrobacterium tumefaciens Plant Physiol. 115 971–980 Occurrence Handle12223854

    PubMed  Google Scholar 

  • MD Chilton TC Currier SK Farrand AJ Bendich MP Gordon EW Nester (1974) ArticleTitleAgrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors Proc. Natl. Acad. Sci. USA 71 3672–3676 Occurrence Handle4530328

    PubMed  Google Scholar 

  • CC Chu CC Wang CS Sun C Hus KC Yin CY Chu FY Bi (1975) ArticleTitleEstablishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources Sci. Sin. 18 659–668

    Google Scholar 

  • IS Curtis HG Nam (2001) ArticleTitleTransgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method – plant development and surfactant are important in optimizing transformation efficiency Transgenic Res. 10 363–371 Occurrence Handle10.1023/A:1016600517293 Occurrence Handle11592715

    Article  PubMed  Google Scholar 

  • SL Dellaporta J Wood JB Hicks (1983) ArticleTitleA plant DNA miniprepration: version II Plant Mol. Biol. Rep. 4 9–21

    Google Scholar 

  • K D’Halluin E Bonne M Bossut MD Beuckeleer J Leemans (1992) ArticleTitleTransgenic maize plants by tissue electroporation Plant Cell 4 1495–1505 Occurrence Handle10.1105/tpc.4.12.1495 Occurrence Handle1334743

    Article  PubMed  Google Scholar 

  • W Dillen J DeClercq J Kapila M Zambre M Van Montagu G Angenon (1997) ArticleTitleThe effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants Plant J. 12 1459–1463 Occurrence Handle10.1046/j.1365-313x.1997.12061459.x

    Article  Google Scholar 

  • BR Frame PR Drayton SV BagNall CJ Lewnau WP Bullock HM Wilson JM Dunwell JA Thompson K Wang (1994) ArticleTitleProduction of fertile transgenic maize plants by silicon carbide whisker-mediated transformation Plant J. 6 941–948 Occurrence Handle10.1046/j.1365-313X.1994.6060941.x

    Article  Google Scholar 

  • BR Frame H Shou RK Chikwamba Z Zhang C Xiang TM Fonger SEK Pegg B Li DS Nettleton D Pei K Wang (2002) ArticleTitleAgrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system Plant Physiol. 129 13–22 Occurrence Handle10.1104/pp.000653 Occurrence Handle12011333

    Article  PubMed  Google Scholar 

  • KJ Fullner JC Lara EW Nester (1996) ArticleTitlePilus assembly by Agrobacterium T-DNA transfer genes Science 273 1107–1109 Occurrence Handle8688097

    PubMed  Google Scholar 

  • KJ Fullner EW Nester (1996) ArticleTitleTemperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens J.␣Bacteriol. 178 1498–1504 Occurrence Handle8626274

    PubMed  Google Scholar 

  • OL Gamborg RA Miller K Ojima (1968) ArticleTitleNutrient requirements of suspension cultures of soybean root cells Exp. Cell Res. 50 151–158 Occurrence Handle10.1016/0014-4827(68)90403-5 Occurrence Handle5650857

    Article  PubMed  Google Scholar 

  • SB Gelvin (2000) ArticleTitleAgrobacterium and plant genes: involved in T-DNA transfer and integration Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 223–256 Occurrence Handle10.1146/annurev.arplant.51.1.223 Occurrence Handle15012192

    Article  PubMed  Google Scholar 

  • SB Gelvin (2003) ArticleTitleAgrobacterium-mediated plant transformation: the biology behind the “gene-jocking” tool Microbiol. Mol. Biol. Rev. 67 16–37 Occurrence Handle10.1128/MMBR.67.1.16-37.2003 Occurrence Handle12626681

    Article  PubMed  Google Scholar 

  • MV Golovkein M Abraham S Morocz S Bottka A Feher D Dudits (1993) ArticleTitleProductions of transgenic maize plants by direct DNA uptake into embryogenic protoplasts Plant Sci. 90 41–52 Occurrence Handle10.1016/0168-9452(93)90154-R

    Article  Google Scholar 

  • WJ Gordon-Kamm TM Spencer ML Mangano TR Adams RJ Daines WG Start JV O’Brien SA Chambers WR Adams SuffixJr NG Willetts TB Rice CJ Mackey RW Krueger AP Kausch PG Lemaux (1990) ArticleTitleTransformation of maize cells and regeneration of fertile transgenic plants Plant Cell 2 603–618 Occurrence Handle10.1105/tpc.2.7.603 Occurrence Handle12354967

    Article  PubMed  Google Scholar 

  • RGH Gutlitz PW Lamb AG Matthsse (1987) ArticleTitleInvolvement of carrot cell surface proteins in attachment of Agrobacterium tumefaciens Plant Physiol. 83 564–575

    Google Scholar 

  • Y Hiei T Komari T Kubo (1997) ArticleTitleTransformation of rice mediated by Agrobacterium tumefaciens Plant Mol. Biol. 35 205–218 Occurrence Handle10.1023/A:1005847615493 Occurrence Handle9291974

    Article  PubMed  Google Scholar 

  • Y Hiei T Komari Y Ishida H Saito (2000) ArticleTitleDevelopment of Agrobacterium-mediated transformation method for monocotyledonous plants Breed. Res. 2 205–213

    Google Scholar 

  • A Hoekema PR Hirsch PJJ Hooykaas RA Schilperoort (1983) ArticleTitleA binary plant vector strategy based on separation of the vir and T-region of the Agrobacterium tumefaciens Ti plasmid Nature 303 179–180 Occurrence Handle10.1038/303179a0

    Article  Google Scholar 

  • R Höfgen L Willmitzer (1988) ArticleTitleStorage of competent cells for Agrobacterium tumefaciens Nucleic Acids Res. 16 9877 Occurrence Handle3186459

    PubMed  Google Scholar 

  • EE Hood SB Gelvin LS Melchers A Hoekema (1993) ArticleTitleNew Agrobacterium helper plasmids for gene transfer to plants Transgenic Res. 2 208–218 Occurrence Handle10.1007/BF01977351

    Article  Google Scholar 

  • Y Ishida H Satto S Ohta Y Hiei T Komari T Kumashiro (1996) ArticleTitleHigh efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens Nat. Biotechnol. 14 745–750 Occurrence Handle10.1038/nbt0696-745 Occurrence Handle9630983

    Article  PubMed  Google Scholar 

  • RA Jefferson (1987) ArticleTitleAssaying chimeric in plants: the GUS gene fusion system Plant Mol. Biol. Rep. 5 387–405

    Google Scholar 

  • T-S Ko S Lee S Krasnyanski SS Korban (2003) ArticleTitleTwo critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant Theor. Appl. Genet. 107 439–447 Occurrence Handle10.1007/s00122-003-1264-6 Occurrence Handle12721637

    Article  PubMed  Google Scholar 

  • C Koncz J Schell (1986) ArticleTitleThe promoter of the TL-DNA gene 5 controls the tissue-specific expression of the chimeric genes carried by a novel type of Agrobacterium binary vector Mol. Gen. Genet. 204 383–396 Occurrence Handle10.1007/BF00331014

    Article  Google Scholar 

  • T Kondo H Hasegawa M Suzuki (2000) ArticleTitleTransformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer Plant Cell Rep. 19 989–993 Occurrence Handle10.1007/s002990000222

    Article  Google Scholar 

  • TK Mondal A Bhattacharya PS Ahuja PK Chand (2001) ArticleTitleTransgenic tea [Camellia sinensis (L.) O. Kuntze cv. Kangra Jat] plants obtained by Agrobacterium-mediated transformation of somatic embryos Plant Cell Rep. 20 712–720 Occurrence Handle10.1007/s002990100382

    Article  Google Scholar 

  • D Negrotto M Jolley S Beer AR Wenck G Hansen (2000) ArticleTitleThe use of phosphomanose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation Plant Cell Rep. 19 798–803 Occurrence Handle10.1007/s002999900187

    Article  Google Scholar 

  • JF Petolino NL Hopkins BD Kosegi M Skokut (2000) ArticleTitleWhisker-mediated transformation of embryogenic callus of maize Plant Cell Rep. 19 781–786 Occurrence Handle10.1007/s002999900180

    Article  Google Scholar 

  • H Rashid S Yokoi K Toriyama K Hinata (1996) ArticleTitleTransgenic plant production mediated by Agrobacterium in Indica rice Plant Cell Rep. 15 727–730 Occurrence Handle10.1007/s002990050108

    Article  Google Scholar 

  • J Sambrook EF Fritsch T Maniatis (1989) Molecular Cloning: A Laboratory Manual, 2nd edn Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY

    Google Scholar 

  • SE Stachel EW Nester PC Zambryski (1986) ArticleTitleA plant cell factor induces Agrobacterium tumefaciens vir gene expression Proc. Nat.l Acad. Sci. USA 83 379–383

    Google Scholar 

  • G Sunilkumar KS Rathore (2001) ArticleTitleTransgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration Mol. Breed. 8 37–52 Occurrence Handle10.1023/A:1011906701925

    Article  Google Scholar 

  • S Suzuki M Nakano (2002) ArticleTitleAgrobacterium-mediated production of transgenic plants of Muscari armeniacum Leichtl. ex Bak Plant. Cell. Rep. 20 835–841 Occurrence Handle10.1007/s00299-001-0405-0

    Article  Google Scholar 

  • Y Wan JM Widholm PG Lemaux (1995) ArticleTitleType-I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.) Planta 196 7–14 Occurrence Handle10.1007/BF00193211

    Article  Google Scholar 

  • H Wang M Qi AJ Cutler (1993) ArticleTitleA simple method of preparing plant samples for PCR Nucleic Acids Res. 21 4153–4154 Occurrence Handle8371994

    PubMed  Google Scholar 

  • H Wu C Sparks B Amoah D Jones (2003) ArticleTitleFactors influencing successful Agrobacterium-mediated genetic transformation of wheat Plant Cell Rep. 21 659–668 Occurrence Handle12789416

    PubMed  Google Scholar 

  • H Yu SH Yang CJ Goh (2001) ArticleTitleAgrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1 Plant Cell Rep. 20 301–305 Occurrence Handle10.1007/s002990100334

    Article  Google Scholar 

  • Z Zhao W Gu T Cai L Tagliani D Hondred D Bond S Schroeder M Rudert D Pierce (2001) ArticleTitleHigh throughput genetic transformation mediated by Agrobacterium tumefaciens in maize Mol. Breed. 8 323–333 Occurrence Handle10.1023/A:1015243600325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Wei, Z. Successful Agrobacterium-Mediated Genetic Transformation of Maize Elite Inbred lines. Plant Cell Tiss Organ Cult 83, 187–200 (2005). https://doi.org/10.1007/s11240-005-5772-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-005-5772-8

Key words:

Navigation