Skip to main content

Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology

  • Chapter
  • First Online:
Biotechnology of Yeasts and Filamentous Fungi

Abstract

Lipids are essential for any organism. They are hydrophobic compounds and include, for instance, acylglycerides, free fatty acids, sterols and isoprenoids. Their synthesis starts from acetyl-CoA, which is converted to lipids by a variety of complex biochemical reactions. Lipids consist of highly reduced molecules, and the redox factor providing electrons for their synthesis is NADPH, which is mainly produced by the pentose phosphate pathway and malic enzyme. There are a variety of fungi that can accumulate lipids; oleaginous fungi can accumulate 20 to more than 80% of their biomass as lipids. Many of them can convert carbon sources derived from second-generation substrates or low-value residues, such as lignocellulose hydrolysate or crude glycerol from biodiesel production. There are also substantial efforts to genetically manipulate fungi to produce lipids or lipid-derived compounds with high-efficiency and from low-value substrates. Lipids have broad potential in biotechnological applications. Polyunsaturated fatty acids are essential for human nutrition, and they can be produced in high amounts by certain zygomycetous species or by genetically modified yeasts. Acylglycerides can be converted to biodiesel and high-value chemicals. It is possible to obtain biodiesel, jet fuel, specific chemicals and carotenes as chemicals and food and feed additives from isoprenoids. Lipids can be combined with other biomolecules. Glycolipids have a high biotechnological potential as biosurfactants. Lipoproteins are essential for the viability of any eukaryotic cell and can be the target for developing novel antifungal drugs. As most lipids are stored intracellularly, there is also a high demand for process development towards a sustainable production of lipid-derived fuels and chemicals. Lipid metabolism of fungi and its biotechnological utilisation has recently obtained huge attention and is a rapidly developing field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akpina-Bayizit A (2014) Fungal lipids: the biochemistry of lipid accumulation. Int J Chem Eng Appl 5:409–414

    Google Scholar 

  • Alcaino J, Bravo N, Cordova P, Marcoleta AE, Contreras G, Barahona S, Sepulveda D, Fernandez-Lobato M, Baeza M, Cifuentes V (2016) The involvement of Mig1 from Xanthophyllomyces dendrorhous in catabolic repression: an active mechanism contributing to the regulation of carotenoid production. PLoS One 11:e0162838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • André A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    Article  CAS  Google Scholar 

  • Asadi SZ, Khosravi-Darani K, Nikoopour H, Bakhoda H (2015) Evaluation of the effect of process variables on the fatty acid profile of single cell oil produced by Mortierella using solid-state fermentation. Crit Rev Biotechnol 35:94–102

    Article  CAS  PubMed  Google Scholar 

  • Asmer H-J, Lang S, Wagner F, Wray V (1988) Microbial production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466

    Article  CAS  Google Scholar 

  • Azócar L, Ciudad G, Heipieper HJ, Navia R (2010) Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol 88:621–636

    Article  PubMed  CAS  Google Scholar 

  • Barnett JA, Kornberg HL (1960) The utilization by yeasts of acids of the tricarboxylic acid cycle. Microbiology 23:65–82

    CAS  Google Scholar 

  • Béligon V, Christophe G, Fontanille P, Larroche C (2016) Microbial lipids as potential source to food supplements. Curr Opin Food Sci 7:35–42

    Article  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Aggeli D, Elazzazy AM, Baeshen MN, Aggelis G (2016) Microbial oils as food additives: recent approaches for improving microbial oil production and its polyunsaturated fatty acid content. Curr Opin Biotechnol 37:24–35

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Nicaud JM, Gaillardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Domergue F, Pascal S, Jetter R, Renne C, Faure J-D, Haslam RP, Napier JA, Lessire R, Joubès J (2012) Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex. Plant Cell 24:3106–3118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biddy MJ, Davis R, Humbird D, Tao L, Dowe N, Guarnieri MT, Linger JG, Karp EM, Salvachúa D, Vardon DR, Beckham GT (2016) The techno-economic basis for coproduct manufacturing to enable hydrocarbon fuel production from lignocellulosic biomass. ACS Sustain Chem Eng 4:3196–3211

    Article  CAS  Google Scholar 

  • Black PN, DiRusso CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 1771:286–298

    Article  CAS  PubMed  Google Scholar 

  • Blazeck J, Liu L, Knight R, Alper HS (2013) Heterologous production of pentane in the oleaginous yeast Yarrowia lipolytica. J Biotechnol 165:184–194

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg J, Blomqvist J, Pickova J, Bonturi N, Sandgren M, Passoth V (2016) Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast 33:451–462

    Article  CAS  PubMed  Google Scholar 

  • Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17:480–488

    Article  CAS  PubMed  Google Scholar 

  • Calvey CH, Willis LB, Jeffries TW (2014) An optimized transformation protocol for Lipomyces starkeyi. Curr Genet 60:223–230

    Article  CAS  PubMed  Google Scholar 

  • Cannizzaro C, Christensen B, Nielsen J, von Stockar U (2004) Metabolic network analysis on Phaffia rhodozyma yeast using 13C-labeled glucose and gas chromatography-mass spectrometry. Metab Eng 6:340–351

    Article  CAS  PubMed  Google Scholar 

  • Certik M, Horenitzky R (1999) Supercritical CO2 extraction of fungal oil containing γ-linolenic acid. Biotechnol Tech 13:11–15

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Chen X, Li Z, Zhang X, Hu F, Ryu DY, Bao J (2009) Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol 159:591–604

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J (2013) Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng 15:48–54

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Lee DY, Chang MW (2015) Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab Eng 31:53–61

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, McNally DJ, Labbe C, Voyer N, Belzile F, Bélanger RR (2003) Insertional mutagenesis of a fungal biocontrol agent led to discovery of a rare cellobiose lipid with antifungal activity. Appl Environ Microbiol 69:2595–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciesielska K, Van Bogaert IN, Chevineau S, Li B, Groeneboer S, Soetaert W, Van de Peer Y, Devreese B (2014) Exoproteome analysis of Starmerella bombicola results in the discovery of an esterase required for lactonization of sophorolipids. J Proteome 98:159–174

    Article  CAS  Google Scholar 

  • Colabella F, Libkind D (2016) PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.) Rev Argent Microbiol 48:15–20

    PubMed  Google Scholar 

  • Cui Y, Blackburn JW, Liang Y (2012) Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioenergy 47:410–417

    Article  CAS  Google Scholar 

  • Daniel H-J, Otto RT, Binder M, Reuss M, Syldatk C (1999) Production of sophorolipids from whey: development of a two-stage process with Cryptococcus curvatus ATCC 20509 and Candida bombicola ATCC 22214 using deproteinized whey concentrates as substrates. Appl Microbiol Biotechnol 51:40–45

    Article  CAS  PubMed  Google Scholar 

  • Davila A-M, Marchal R, Vandecasteele J-P (1992) Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11

    Article  CAS  Google Scholar 

  • Della-Bianca B, Basso T, Stambuk B, Basso L, Gombert A (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991

    Article  CAS  PubMed  Google Scholar 

  • Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ (2015) Sophorolipid biosurfactants: possible uses as antibacterial and antibiofilm agent. New Biotechnol 32:720–726

    Article  CAS  Google Scholar 

  • Donald KA, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 63:3341–3344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Hydrothermal treatment of oleaginous yeast for the recovery of free fatty acids for use in advanced biofuel production. J Biotechnol 187:10–15

    Article  CAS  PubMed  Google Scholar 

  • Evans CT, Ratledge C (1984) Induction of xylulose-5-phosphate phosphoketolase in a variety of yeasts grown ond-xylose: the key to efficient xylose metabolism. Arch Microbiol 139:48–52

    Article  CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  • Feng X, Lian J, Zhao H (2015) Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metab Eng 27:10–19

    Article  CAS  PubMed  Google Scholar 

  • Filippucci S, Tasselli G, Scardua A, Di Mauro S, Cramarossa MR, Perini D, Turchetti B, Onofri A, Forti L, Buzzini P (2016) Study of Holtermanniella wattica, Leucosporidium creatinivorum, Naganishia adeliensis, Solicoccozyma aeria, and Solicoccozyma terricola for their lipogenic aptitude from different carbon sources. Biotechnol Biofuels 9:259

    Article  PubMed  PubMed Central  Google Scholar 

  • Fillet S, Adrio JL (2016) Microbial production of fatty alcohols. World J Microbiol Biotechnol 32:152

    Article  PubMed  CAS  Google Scholar 

  • Fillet S, Gibert J, Suárez B, Lara A, Ronchel C, Adrio JL (2015) Fatty alcohols production by oleaginous yeast. J Ind Microbiol Biotechnol 42:1463–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores-Cotera L, Martín R, Sánchez S (2001) Citrate, a possible precursor of astaxanthin in Phaffia rhodozyma: influence of varying levels of ammonium, phosphate and citrate in a chemically defined medium. Appl Microbiol Biotechnol 55:341–347

    Article  CAS  PubMed  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Foo JL, Susanto AV, Keasling JD, Leong SS, Chang MW (2017) Whole-cell biocatalytic and de novo production of alkanes from free fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 114:232–237

    Article  CAS  PubMed  Google Scholar 

  • Frieman MB, Cormack BP (2004) Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:3105–3114

    Article  CAS  PubMed  Google Scholar 

  • Fu WJ, Chi Z, Ma ZC, Zhou HX, Liu GL, Lee CF, Chi ZM (2015) Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. Appl Microbiol Biotechnol 99:7481–7494

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Cui Z, Zhang J, Bao J (2014) Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Bioresour Technol 152:552–556

    Article  CAS  PubMed  Google Scholar 

  • Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62:2709–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh A, Ando D, Gin J, Runguphan W, Denby C, Wang G, Baidoo EEK, Shymansky C, Keasling JD, García Martín H (2016) 13C Metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Front Bioeng Biotechnol 4:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Gnansounou E (2010) Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol 101:4842–4850

    Article  CAS  PubMed  Google Scholar 

  • Golden C, Allison EH, Cheung WW, Dey M, Halpern B, McCauley DJ, Smith M, Vaitla B, Zeller D, Myers SS (2016) Fall in fish catch threatens human health. Nature 534:317–320

    Article  PubMed  Google Scholar 

  • Gostincar C, Ohm RA, Kogej T, Sonjak S, Turk M, Zajc J, Zalar P, Grube M, Sun H, Han J, Sharma A, Chiniquy J, Ngan CY, Lipzen A, Barry K, Grigoriev IV, Gunde-Cimerman N (2014) Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15:549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham-Rowe D (2011) Agriculture: beyond food versus fuel. Nature 474:S6–S8

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Sheng J, Zhao H, Feng X (2016) Metabolic engineering of Saccharomyces cerevisiae to produce 1-hexadecanol from xylose. Microb Cell Fact 15:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haas MJ, McAloon AJ, Yee WC, Foglia TA (2006) A process model to estimate biodiesel production costs. Bioresour Technol 97:671–678

    Article  CAS  PubMed  Google Scholar 

  • Haque F, Alfatah M, Ganesan K, Bhattacharyya MS (2016) Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep 6:23575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara KY, Morita T, Mochizuki M, Yamamoto K, Ogino C, Araki M, Kondo A (2014) Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb Cell Fact 13:175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, Beese LS (2011) Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem 286:35149–35162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 30:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Hegel PE, Camy S, Destrac P, Condoret JS (2011) Influence of pretreatments for extraction of lipids from yeast by using supercritical carbon dioxide and ethanol as cosolvent. J Supercrit Fluids 58:68–78

    Article  CAS  Google Scholar 

  • Hewald S, Linne U, Scherer M, Marahiel MA, Kämper J, Bölker M (2006) Identification of a gene cluster for biosynthesis of mannosylerythritol lipids in the basidiomycetous fungus Ustilago maydis. Appl Environ Microbiol 72:5469–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A (2003) The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 27:35–64

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Kimura Y, Kimura A (2016) Biological significance of co- and post-translational modifications of the yeast 26S proteasome. J Proteome 134:37–46

    Article  CAS  Google Scholar 

  • Holzer H, Goedde HW (1957) Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem Z 329:175–191

    CAS  PubMed  Google Scholar 

  • Hong SY, Zurbriggen AS, Melis A (2012) Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. J Appl Microbiol 113:52–65

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Zong M-h, Wu H, Liu Q-p (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100:4535–4538

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Wu H, Li R-f, Zong M-h (2012) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29:372–378

    Article  CAS  Google Scholar 

  • Hull A, Golubkov I, Kronberg B, Marandzheva T, van Stam J (2006) An alternative fuel for spark ignition engines. Int J Engine Res 7:203–214

    Article  CAS  Google Scholar 

  • Hyvönen R, Olsson BA, Lundkvist H, Staaf H (2000) Decomposition and nutrient release from Picea abies (L.) Karst. and Pinus sylvestris L. logging residues. Forest Ecol Manag 126:97–112

    Article  Google Scholar 

  • Im JH, Yanagishita H, Ikegami T, Takeyama Y, Idemoto Y, Koura N, Kitamoto D (2003) Mannosylerythritol lipids, yeast glycolipid biosurfactants, are potential affinity ligand materials for human immunoglobulin G. J Biomed Mater Res A 65:379–385

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Ito S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol Lett 4:3–8

    Article  CAS  Google Scholar 

  • Jackson FM, Fraser TC, Smith MA, Lazarus C, Stobart AK, Griffiths G (1998) Biosynthesis of C18 polyunsaturated fatty acids in microsomal membrane preparations from the filamentous fungus Mucor circinelloides. Eur J Biochem 252:513–519

    Article  CAS  PubMed  Google Scholar 

  • Jarboe L, Royce L, Liu P (2013) Understanding biocatalyst inhibition by carboxylic acids. Front Microbiol 4:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin G, Yang F, Hu C, Shen H, Zhao ZK (2012) Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 111:378–382

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Slininger PJ, Dien BS, Waghmode S, Moser BR, Orjuela A, Sousa Lda C, Balan V (2015) Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges. Trends Biotechnol 33:43–54

    Article  CAS  PubMed  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Jönsson LJ, Alriksson B, Nilvebrant N-O (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K (2006) Identification of genes affecting lipid content using transposon mutagenesis in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 70:646–653

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka Y, Tomita N, Kimura K, Kainou K, Uemura H (2007) DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Dsnf2 disruptant of Saccharomyces cerevisiae. Biochem J 408:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamisaka Y, Kimura K, Uemura H, Yamaoka M (2013) Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Appl Microbiol Biotechnol 97:7345–7355

    Article  CAS  PubMed  Google Scholar 

  • Kamiya Y, Sakurai A, Tamura S, Takahashi N (1978) Structure of rhodotorucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem Biophys Res Commun 83:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Karlsson H, Ahlgren S, Sandgren M, Passoth V, Wallberg O, Hansson PA (2016) A systems analysis of biodiesel production from wheat straw using oleaginous yeast: process design, mass and energy balances. Biotechnol Biofuels 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendrick A, Ratledge C (1992) Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem 209:667–673

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Nishimoto M, Chow RW, Pasumarthi VN, Chan R, Chan LJ, Petzold CJ, Keasling JD (2014) Use of nonionic surfactants for improvement of terpene production in Saccharomyces cerevisiae. Appl Environ Microbiol 80:6685–6693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29:91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Ghosh S, Ourisson G, Nakatani Y (2000) Formation of giant vesicles from diacylmannosylerythritols, and their binding to concanavalin A. Chem Commun 2000:861–862

    Article  Google Scholar 

  • Kitamoto D, Ikegami T, Suzuki GT, Sasaki A, Takeyama Y-i, Idemoto Y, Koura N, Yanagishita H (2001) Microbial conversion of n-alkanes into glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma (Candida antarctica). Biotechnol Lett 23:1709–1714

    Article  CAS  Google Scholar 

  • Kulakovskaya TV, Golubev WI, Tomashevskaya MA, Kulakovskaya EV, Shashkov AS, Grachev AA, Chizhov AS, Nifantiev NE (2010) Production of antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169:117–123

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Price NPJ, Ray KJ, Kuo T-M (2010) Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol Lett 311:140–146

    Article  CAS  PubMed  Google Scholar 

  • Kurz M, Eder C, Isert D, Li Z, Paulus EF, Schiell M, Toti L, Vertesy L, Wink J, Seibert G (2003) Ustilipids, acylated beta-D-mannopyranosyl D-erythritols from Ustilago maydis and Geotrichum candidum. J Antibiot (Tokyo) 56:91–101

    Article  CAS  Google Scholar 

  • Ladygina N, Dedyukhina EG, Vainshtein MB (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  • Leber C, Da Silva NA (2014) Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol Bioeng 111:347–358

    Article  CAS  PubMed  Google Scholar 

  • Leber C, Polson B, Fernandez-Moya R, Da Silva NA (2015) Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metab Eng 28:54–62

    Article  CAS  PubMed  Google Scholar 

  • Leber C, Choi JW, Polson B, Da Silva NA (2016) Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnol Bioeng 113:895–900

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Nicaud J-M (2016) Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends Biotechnol 34:798–809

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Dulermo R, Niehus X, Nicaud J-M (2016a) Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metab Eng 38:38–46

    Article  CAS  PubMed  Google Scholar 

  • Ledesma-Amaro R, Lazar Z, Rakicka M, Guo Z, Fouchard F, Coq AC, Nicaud JM (2016b) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124

    Article  CAS  PubMed  Google Scholar 

  • Leibundgut M, Maier T, Jenni S, Ban N (2008) The multienzyme architecture of eukaryotic fatty acid synthases. Curr Opin Struct Biol 18:714–725

    Article  CAS  PubMed  Google Scholar 

  • Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 24:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhao Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41:312–317

    Article  CAS  Google Scholar 

  • Lian J, Zhao H (2015) Recent advances in biosynthesis of fatty acids derived products in Saccharomyces cerevisiae via enhanced supply of precursor metabolites. J Ind Microbiol Biotechnol 42:437–451

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586

    Article  CAS  PubMed  Google Scholar 

  • Liu YS, Wu JY (2008) Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Biotechnol Bioeng 101:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Gao Y, Chen J, Imanaka T, Bao J, Hua Q (2013) Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresour Technol 130:144–151

    Article  CAS  PubMed  Google Scholar 

  • Liu YY, Chi Z, Wang ZP, Liu GL, Chi ZM (2014) Heavy oils, principally long-chain n-alkanes secreted by Aureobasidium pullulans var. melanogenum strain P5 isolated from mangrove system. J Ind Microbiol Biotechnol 41:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Markham K, Blazeck J, Zhou N, Leon D, Otoupal P, Alper HS (2015a) Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metab Eng 31:102–111

    Article  PubMed  CAS  Google Scholar 

  • Liu XZ, Wang QM, Goker M, Groenewald M, Kachalkin AV, Lumbsch HT, Millanes AM, Wedin M, Yurkov AM, Boekhout T, Bai FY (2015b) Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol 81:85–147

    Article  PubMed  Google Scholar 

  • Liu Y, Yap SA, Koh CM, Ji L (2016) Developing a set of strong intronic promoters for robust metabolic engineering in oleaginous Rhodotorula (Rhodosporidium) yeast species. Microb Cell Fact 15:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodge JK, Jackson-Machelski E, Higgins M, McWherter CA, Sikorski JA, Devadas B, Gordon JI (1998) Genetic and biochemical studies establish that the fungicidal effect of a fully depeptidized inhibitor of Cryptococcus neoformans myristoyl-CoA:protein N-myristoyltransferase (Nmt) is Nmt-dependent. J Biol Chem 273:12482–12491

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Xie W, Lu W, Guo F, Gu J, Yu H, Ye L (2014) Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. J Biotechnol 186:128–136

    Article  CAS  PubMed  Google Scholar 

  • Lv X, Wang F, Zhou P, Ye L, Xie W, Xu H, Yu H (2016) Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat Commun 7:12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann PA, McLellan CA, Koseoglu S, Si Q, Kuzmin E, Flattery A, Harris G, Sher X, Murgolo N, Wang H, Devito K, de Pedro N, Genilloud O, Kahn JN, Jiang B, Costanzo M, Boone C, Garlisi CG, Lindquist S, Roemer T (2015) Chemical genomics-based antifungal drug discovery: targeting glycosylphosphatidylinositol (GPI) precursor biosynthesis. ACS Infect Dis 1:59–72

    Article  CAS  PubMed  Google Scholar 

  • Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLellan CA, Whitesell L, King OD, Lancaster AK, Mazitschek R, Lindquist S (2012) Inhibiting GPI anchor biosynthesis in fungi stresses the endoplasmic reticulum and enhances immunogenicity. ACS Chem Biol 7:1520–1528

    Article  CAS  PubMed  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Michaelis S, Barrowman J (2012) Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol Mol Biol Rev 76:626–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnif I, Ghribi D (2016) Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. J Sci Food Agric 96:4310–4320

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Konishi M, Imura T, Yamamoto S, Kitagawa M, Sogabe A, Kitamoto D (2009) Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Appl Microbiol Biotechnol 83:1017

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Ogura Y, Takashima M, Hirose N, Fukuoka T, Imura T, Kondo Y, Kitamoto D (2011) Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. J Biosci Bioeng 112:137–144

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Appl Microbiol Biotechnol 96:931–938

    Article  CAS  PubMed  Google Scholar 

  • Morita T, Koike H, Koyama Y, Hagiwara H, Ito E, Fukuoka T, Imura T, Machida M, Kitamoto D (2013) Genome sequence of the basidiomycetous yeast Pseudozyma antarctica T-34, a producer of the glycolipid biosurfactants mannosylerythritol lipids. Genome Announc 1:e0006413

    Article  PubMed  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Muñiz M, Zurzolo C (2014) Sorting of GPI-anchored proteins from yeast to mammals—common pathways at different sites? J Cell Sci 127:2793–2801

    Article  PubMed  CAS  Google Scholar 

  • Nguyen UTT, Goody RS, Alexandrov K (2010) Understanding and exploiting protein prenyltransferases. Chembiochem 11:1194–1201

    Article  CAS  PubMed  Google Scholar 

  • Nichols CB, Ost KS, Grogan DP, Pianalto K, Hasan S, Alspaugh JA (2015) Impact of protein palmitoylation on the virulence potential of Cryptococcus neoformans. Eukaryot Cell 14:626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259

    Article  CAS  Google Scholar 

  • Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539

    Article  PubMed  PubMed Central  Google Scholar 

  • Olstorpe M, Pickova J, Kiessling A, Passoth V (2014) Strain- and temperature-dependent changes of fatty acid composition in Wickerhamomyces anomalus and Blastobotrys adeninivorans. Biotechnol Appl Biochem 61:45–50

    Article  CAS  PubMed  Google Scholar 

  • Omer CA, Gibbs JB (1994) Protein prenylation in eukaryotic microorganisms: genetics, biology and biochemistry. Mol Microbiol 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Orlean P, Menon AK (2007) Thematic review series: lipid posttranslational modifications. GPI anchoring of protein in yeast and mammalian cells, or: how we learned to stop worrying and love glycophospholipids. J Lipid Res 48:993–1011

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Jiang H, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2011) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Parks LW, Casey WM (1995) Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol 49:95–116

    Article  CAS  PubMed  Google Scholar 

  • Passoth V (2014) Molecular mechanisms in yeast carbon metabolism: bioethanol and other biofuels. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer, Berlin, pp 217–259

    Chapter  Google Scholar 

  • Passoth V (2017) Conventional and non-conventional yeasts for the production of biofuels. In: Satyanarayana T, Kunze G (eds) Yeast diversity in human welfare. Springer Science + Business Media, Singapore (in press)

    Google Scholar 

  • Passoth V, Schnürer J (2003) Non-conventional yeasts in antifungal application. In: de Winde JH (ed) Functional genetics of industrial yeasts. Springer, Berlin, pp 297–329

    Chapter  Google Scholar 

  • Paulino BN, Pessôa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM (2016) Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 100:10265–10293

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  CAS  PubMed  Google Scholar 

  • Pronk JT, Steensma HY, van Dijken JP (1996) Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12:1607–1633

    Article  CAS  PubMed  Google Scholar 

  • Pugh EL, Kates M (1979) Membrane-bound phospholipid desaturases. Lipids 14:159–165

    Article  CAS  PubMed  Google Scholar 

  • Qiao K, Imam Abidi SH, Liu H, Zhang H, Chakraborty S, Watson N, Kumaran Ajikumar P, Stephanopoulos G (2015) Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29:56–65

    Article  CAS  PubMed  Google Scholar 

  • Qiao K, Wasylenko TM, Zhou K, Xu P, Stephanopoulos G (2017) Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35:173–177. Advance online publication

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2012) Omega-3 biotechnology: errors and omissions. Biotechnol Adv 30:1746–1747

    Article  PubMed  Google Scholar 

  • Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20:D602

    Article  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Rau U, Nguyen LA, Roeper H, Koch H, Lang S (2005) Fed-batch bioreactor production of mannosylerythritol lipids secreted by Pseudozyma aphidis. Appl Microbiol Biotechnol 68:607–613

    Article  CAS  PubMed  Google Scholar 

  • Reinertsen SA, Elliot LF, Cochran VL, Campbell GS (1984) Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol Biochem 16:459–464

    Article  CAS  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GM, Hussain MS, Gambill L, Gao D, Yaguchi A, Blenner M (2016) Engineering xylose utilization in Yarrowia lipolytica by understanding its cryptic xylose pathway. Biotechnol Biofuels 9:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Saiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88:645–658

    Article  CAS  PubMed  Google Scholar 

  • Roelants SL, Saerens KM, Derycke T, Li B, Lin YC, Van de Peer Y, De Maeseneire SL, Van Bogaert IN, Soetaert W (2013) Candida bombicola as a platform organism for the production of tailor-made biomolecules. Biotechnol Bioeng 110:2494–2503

    Article  CAS  PubMed  Google Scholar 

  • Roelants SLKW, De Maeseneire SL, Ciesielska K, Van Bogaert INA, Soetaert W (2014) Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential. Appl Microbiol Biotechnol 98:3449–3461

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113

    Article  CAS  PubMed  Google Scholar 

  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T (2011) Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem 46:210–218

    Article  CAS  Google Scholar 

  • Saerens KMJ, Roelants SLKW, Van Bogaert INA, Soetaert W (2011a) Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. FEMS Yeast Res 11:123–132

    Article  CAS  PubMed  Google Scholar 

  • Saerens KMJ, Saey L, Soetaert W (2011b) One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnol Bioeng 108:2923–2931

    Article  CAS  PubMed  Google Scholar 

  • Saerens KMJ, Zhang J, Saey L, Van Bogaert INA, Soetaert W (2011c) Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 28:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sakuradani E, Ando A, Shimizu S, Ogawa J (2013) Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng 116:417–422

    Article  CAS  PubMed  Google Scholar 

  • Sankh S, Thiru M, Saran S, Rangaswamy V (2013) Biodiesel production from a newly isolated Pichia kudriavzevii strain. Fuel 106:690–696

    Article  CAS  Google Scholar 

  • Santiago-Tirado FH, Doering TL (2016) All about that fat: lipid modification of proteins in Cryptococcus neoformans. J Microbiol 54:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharnewski M, Pongdontri P, Mora G, Hoppert M, Fulda M (2008) Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling. FEBS J 275:2765–2778

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Shabbir-Hussain M, Frogue K, Blenner M, Wheeldon I (2016) Standardized markerless gene integration for pathway engineering in Yarrowia lipolytica. ACS Synth Biol 6(3):402–409

    Article  PubMed  CAS  Google Scholar 

  • Shah V, Doncel GF, Seyoum T, Eaton KM, Zalenskaya I, Hagver R, Azim A, Gross R (2005) Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother 49:4093–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2014) Engineering of chromosomal wax ester synthase integrated Saccharomyces cerevisiae mutants for improved biosynthesis of fatty acid ethyl esters. Biotechnol Bioeng 111:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Ji H, Siewers V, Nielsen J (2016) Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica. FEMS Yeast Res 16:fov108

    Article  PubMed  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasling JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9:160–168

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Shinmen Y, Kawashima H, Akimoto K, Yamada H (1988) Fungal mycelia as a novel source of eicosapentaenoic acid. Biochem Biophys Res Commun 150:335–341

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Kawashima H, Akimoto K, Shinmen Y, Yamada H (1989) Conversion of linseed oil to an eicosapentaenoic acid-containing oil by Mortierella alpina 1S-4 at low temperature. Appl Microbiol Biotechnol 32:1–4

    Article  CAS  Google Scholar 

  • Simopoulos AP (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed Pharmacother 60:502–507

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Sørensen A, Ahamed A, Ahring BK (2015) Production of hydrocarbons by Aspergillus carbonarius ITEM 5010. Fungal Biol 119:274–282

    Article  CAS  PubMed  Google Scholar 

  • Sinha M, Weyda I, Sørensen A, Bruno KS, Ahring BK (2017) Alkane biosynthesis by Aspergillus carbonarius ITEM 5010 through heterologous expression of Synechococcus elongatus acyl-ACP/CoA reductase and aldehyde deformylating oxygenase genes. AMB Express 7:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32:1336–1360

    Article  CAS  PubMed  Google Scholar 

  • Slininger PJ, Dien BS, Kurtzman CP, Moser BR, Bakota EL, Thompson SR, O’Bryan PJ, Cotta MA, Balan V, Jin M, Sousa Lda C, Dale BE (2016) Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol Bioeng 113:1676–1690

    Article  CAS  PubMed  Google Scholar 

  • Soccol CR, Dalmas Neto CJ, Soccol VT, Sydney EB, da Costa ES, Medeiros AB, Vandenberghe LP (2016) Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresour Technol 223:259–268

    Article  PubMed  CAS  Google Scholar 

  • Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299

    Article  CAS  PubMed  Google Scholar 

  • Soxhlet F (1879) Die gewichtsanalytische Bestimmung des Milchfettes. Dinglers Polytech J 232:461–465

    Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005a) Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40:25–30

    Article  CAS  PubMed  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005b) Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with delta12-desaturase gene expression. Appl Environ Microbiol 71:5124–5128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Zhang S, Tan H, Zhao Z (2010) Molecular cloning and characterization of a malic enzyme gene from the oleaginous yeast Lipomyces starkeyi. Mol Biotechnol 45:121–128

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Feng H, Chen WN (2013) Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metab Eng 16:95–102

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2015) Comparison of biochemical activities between high and low lpid-producing strains of Mucor circinelloides: an explanation for the high oleaginicity of strain WJ11. PLoS One 10:e0128396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanimura A, Takashima M, Sugita T, Endoh R, Kikukawa M, Yamaguchi S, Sakuradani E, Ogawa J, Ohkuma M, Shima J (2014) Cryptococcus terricola is a promising oleaginous yeast for biodiesel production from starch through consolidated bioprocessing. Sci Rep 4:4776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927

    Article  CAS  PubMed  Google Scholar 

  • Tehlivets O, Scheuringer K, Kohlwein SD (2007) Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255–270

    Article  CAS  PubMed  Google Scholar 

  • Teichmann B, Linne U, Hewald S, Marahiel MA, Bölker M (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533

    Article  CAS  PubMed  Google Scholar 

  • Teichmann B, Labbé C, Lefebvre F, Bölker M, Linne U, Bélanger RR (2011) Identification of a biosynthesis gene cluster for flocculosin a cellobiose lipid produced by the biocontrol agent Pseudozyma flocculosa. Mol Microbiol 79:1483–1495

    Article  CAS  PubMed  Google Scholar 

  • Thiru M, Sankh S, Rangaswamy V (2011) Process for biodiesel production from Cryptococcus curvatus. Bioresour Technol 102:10436–10440

    Article  CAS  PubMed  Google Scholar 

  • Tippmann S, Scalcinati G, Siewers V, Nielsen J (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81

    Article  CAS  PubMed  Google Scholar 

  • Tocher DR (2015) Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449:94–107

    Article  CAS  Google Scholar 

  • Uçkun Kiran E, Trzcinski A, Webb C (2013) Microbial oil produced from biodiesel by-products could enhance overall production. Bioresour Technol 129:650–654

    Article  PubMed  CAS  Google Scholar 

  • Uprety BK, Dalli SS, Rakshit SK (2017) Bioconversion of crude glycerol to microbial lipid using a robust oleaginous yeast Rhodosporidium toruloides ATCC 10788 capable of growing in the presence of impurities. Energy Convers Manag 135:117–128

    Article  CAS  Google Scholar 

  • Van Bogaert IN, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ (2008a) Cloning and characterisation of the glyceraldehyde 3-phosphate dehydrogenase gene of Candida bombicola and use of its promoter. J Ind Microbiol Biotechnol 35:1085–1092

    Article  PubMed  CAS  Google Scholar 

  • Van Bogaert IN, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ (2008b) Development of a transformation and selection system for the glycolipid-producing yeast Candida bombicola. Yeast 25:273–278

    Article  PubMed  CAS  Google Scholar 

  • Van Bogaert INA, Zhang J, Soetaert W (2011) Microbial synthesis of sophorolipids. Process Biochem 46:821–833

    Article  CAS  Google Scholar 

  • Van Bogaert INA, Holvoet K, Roelants SLKW, Li B, Lin Y-C, Van de Peer Y, Soetaert W (2013) The biosynthetic gene cluster for sophorolipids: a biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol Microbiol 88:501–509

    Article  PubMed  CAS  Google Scholar 

  • Van Bogaert IN, Buyst D, Martins JC, Roelants SL, Soetaert WK (2016) Synthesis of bolaform biosurfactants by an engineered Starmerella bombicola yeast. Biotechnol Bioeng 113:2644–2651

    Article  PubMed  CAS  Google Scholar 

  • Verdoes JC, Krubasik KP, Sandmann G, van Ooyen AJ (1999a) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Misawa N, van Ooyen AJ (1999b) Cloning and characterization of the astaxanthin biosynthetic gene encoding phytoene desaturase of Xanthophyllomyces dendrorhous. Biotechnol Bioeng 63:750–755

    Article  CAS  PubMed  Google Scholar 

  • Vongsangnak W, Ruenwai R, Tang X, Hu X, Zhang H, Shen B, Song Y, Laoteng K (2013) Genome-scale analysis of the metabolic networks of oleaginous Zygomycete fungi. Gene 521:180–190

    Article  CAS  PubMed  Google Scholar 

  • Vorapreeda T, Thammarongtham C, Cheevadhanarak S, Laoteng K (2013) Repertoire of malic enzymes in yeast and fungi: insight into their evolutionary functional and structural significance. Microbiology 159:2548–2557

    Article  CAS  PubMed  Google Scholar 

  • Wang CW (2015) Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 72:2677–2695

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wei H, Knoshaug E, Van Wychen S, Xu Q, Himmel ME, Zhang M (2016) Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnol Biofuels 9:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Lv X, Xie W, Zhou P, Zhu Y, Yao Z, Yang C, Yang X, Ye L, Yu H (2017) Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metab Eng 39:257–266

    Article  CAS  PubMed  Google Scholar 

  • Watanabe NA, Miyazaki M, Horii T, Sagane K, Tsukahara K, Hata K (2012) E1210, a new broad-spectrum antifungal, suppresses Candida albicans hyphal growth through inhibition of glycosylphosphatidylinositol biosynthesis. Antimicrob Agents Chemother 56:960–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:E111–E118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology 146(Pt 9):2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Hamid AA, Li Y, Ratledge C (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147:2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Xu P, Qiao K, Ahn WS, Stephanopoulos G (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci U S A 113:10848–10853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Sharpe PL, Hong S-P, Yadav NS, Xie D, Short DR, Damude HG, Rupert RA, Seip JE, Wang J, Pollak DW, Bostick MW, Bosak MD, Macool DJ, Hollerbach DH, Zhang H, Arcilla DM, Bledsoe SA, Croker K, McCord EF, Tyreus BD, Jackson EN, Zhu Q (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat Biotechnol 31:734–740

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Hara KY, Morita T, Nishimura A, Sasaki D, Ishii J, Ogino C, Kizaki N, Kondo A (2016) Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes. Microb Cell Fact 15:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye L, Lv X, Yu H (2016) Engineering microbes for isoprene production. Metab Eng 38:125–138

    Article  CAS  PubMed  Google Scholar 

  • Yen H-W, Yang Y-C, Yu Y-H (2012) Using crude glycerol and thin stillage for the production of microbial lipids through the cultivation of Rhodotorula glutinis. J Biosci Bioeng 114:453–456

    Article  CAS  PubMed  Google Scholar 

  • Yu KO, Jung J, Kim SW, Park CH, Han SO (2012) Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol Bioeng 109:110–115

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Dong T, Zheng Y, Miao C, Chen S (2015) Investigations on cell disruption of oleaginous microorganisms: hydrochloric acid digestion is an effective method for lipid extraction. Eur J Lipid Sci Technol 117:730–737

    Article  CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C (2007) Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology 153:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22:775–783

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhang L, Chen H, Chen YQ, Ratledge C, Song Y, Chen W (2013) Regulatory properties of malic enzyme in the oleaginous yeast, Yarrowia lipolytica, and its non-involvement in lipid accumulation. Biotechnol Lett 35:2091–2098

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Wu C, Wu Q, Dai J, Song Y (2016a) Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-Labled glucose and gas chromatography-mass spectrometry. PLoS One 11:e0159187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Ito M, Skerker JM, Arkin AP, Rao CV (2016b) Metabolic engineering of the oleaginous yeast Rhodosporidium toruloides IFO0880 for lipid overproduction during high-density fermentation. Appl Microbiol Biotechnol 100:9393–9405

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV (2016c) Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 113:1056–1066

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhang H, Wang L, Chen H, Chen YQ, Chen W, Song Y (2015) 13C-metabolic flux analysis of lipid accumulation in the oleaginous fungus Mucor circinelloides. Bioresour Technol 197:23–29

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Cánovas-Márquez JT, Tang X, Chen H, Chen YQ, Chen W, Garre V, Song Y, Ratledge C (2016) Role of malate transporter in lipid accumulation of oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 100:1297–1305

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Buijs NA, Siewers V, Nielsen J (2014) Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat Commun 7:11709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Ding Y, Gong Z, Yang L, Zhang S, Zhang C, Lin X, Shen H, Zou H, Xie Z, Yang F, Zhao X, Liu P, Zhao ZK (2015) Dynamics of the lipid droplet proteome of the oleaginous yeast Rhodosporidium toruloides. Eukaryot Cell 14:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Biofuel related research in my group was funded by the Swedish Energy Authority (STEM), the MicroDrive programme at the Swedish University of Agricultural Sciences, the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas) (LipoDrive programme) and the Visby programme of the Swedish Institute. I thank Dr. Su-Lin Leong for linguistic advice and the members of my group, especially Dr. Ievgeniia Tiukova and Jonas Ohlsson, for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Passoth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Passoth, V. (2017). Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology. In: Sibirny, A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham. https://doi.org/10.1007/978-3-319-58829-2_6

Download citation

Publish with us

Policies and ethics